
Su
ch
i

Distributed Systems

Suchithra Ravi

Last Updated: May 27, 2021

The future is already here, it is just not evenly distributed yet.

� William Gibson, Not in Cyberpunk

1

mailto:notes@suchi.dev
https://quoteinvestigator.com/2012/01/24/future-has-arrived/

Su
ch
i

0 Preface 6

1 Introduction 7
1.1 Why study Distributed Systems? . 7
1.2 What is a distributed system? . 7

1.2.1 Intuition . 8
1.3 Simple Model of a Distributed System 8

1.3.1 More complex model of a Distributed System 9
1.3.2 Importance of Model . 9

1.4 What is hard about Distributed Systems 10
1.5 Properties of a Distributed System 11

1.5.1 Correctness . 12
1.6 Brewer's CAP Theorem . 13

2 Remote Procedure Call 14
2.1 Client-Server Architecture . 14

2.1.1 Challenges . 14
2.2 Role of RPC . 15
2.3 Architecture of RPC System . 15
2.4 Anatomy of an RPC Call . 16
2.5 Invocation Semantics of RPC Operation 17
2.6 Examples of RPC Systems . 19

2.6.1 gRPC . 19

3 Time in Distributed Systems 21
3.1 The Time Problem . 21

3.1.1 Why do we need to measure time in DS? 21
3.1.2 Why is measuring time hard in DS? 21
3.1.3 Logical Time . 23

3.2 Representing Time and Sequence . 23
3.2.1 Time Diagrams . 24

3.3 Clock Consistency . 24
3.4 Lamport's Scalar Clock . 25

3.4.1 Clock De�nition . 25
3.4.2 Clock Correctness . 26

3.5 Vector Clock . 27
3.5.1 Clock De�nition . 27

3.6 Matrix Clock . 29

4 State in Distributed Systems 30
4.1 The problem of State . 30

4.1.1 What is state? . 30
4.1.2 Cuts . 31
4.1.3 Challenges in capturing state 32

2

Su
ch
i

4.2 System Model . 32
4.3 Finding a Consistent Cut . 33

4.3.1 Assumptions of the algorithm 34
4.3.2 Properties of state captured 34

4.4 Global State . 35
4.4.1 Formal de�nition . 35
4.4.2 Bene�ts of Global State . 35

5 Consensus in Distributed Systems 37
5.1 What is Consensus? . 37
5.2 Theoretical Posibility of Consensus 38

5.2.1 System Model . 38
5.2.2 FLP Theorem . 39
5.2.3 Is Consensus Really Impossible? 40

6 Consensus Protocols 41
6.1 Goals of Consensus Protocols . 41
6.2 2-Phase Commit (2PC) . 42
6.3 3-Phase Commit (3PC) . 42
6.4 Paxos . 42

6.4.1 Basics of Paxos . 43
6.4.2 Phases of Paxos . 44
6.4.3 Paxos vs. FLP . 47
6.4.4 Paxos in Practice . 47

6.5 RAFT . 48
6.5.1 Phases of RAFT . 48
6.5.2 RAFT Correctness . 50
6.5.3 RAFT in Practice . 51

7 Replication 52
7.1 What is Replication . 52

7.1.1 Goals . 52
7.1.2 Replication Models . 52
7.1.3 Replication Techniques . 52
7.1.4 Replication and Consensus . 53
7.1.5 How to choose replication method 54

7.2 Chain Replication . 54
7.2.1 Pros and Cons . 55

7.3 CRAQ . 55
7.3.1 CRAQ Performance comparison with Chain Replication . . . 56

8 Fault Tolerance 57
8.1 Basics of Failures . 57

8.1.1 How to deal with failures . 58

3

Su
ch
i

8.2 Rollback-Recovery . 58
8.3 Checkpointing . 61

8.3.1 Uncoordinated Checkpointing 61
8.3.2 Coordinated Checkpointing 62
8.3.3 Communication-Induced Checkpoints 63

8.4 Logging . 63
8.5 Which Method to Use? . 64

9 Distributed Transactions 65
9.1 Transactions and Distributed Transactions 65
9.2 Google Spanner . 66

9.2.1 Spanner Stack . 67
9.2.2 Consistency Requirements for read operations 67

9.3 True Time . 68
9.3.1 Ordering Write Transactions 69
9.3.2 Ordering Read Transactions 71
9.3.3 TrueTime alternatives . 71

9.4 AWS Aurora . 72

10 Consistency in Distributed Data Stores 74
10.1 Consistency Models . 75
10.2 Look-Aside Cache . 76

10.2.1 Look-Aside Cache Read Operation 76
10.2.2 Look-Aside Cache Update Operation 77

10.3 Memcached . 77
10.3.1 Features of Memcache . 78
10.3.2 Mechanisms in Memcached . 78
10.3.3 Scaling Memcache . 80

10.4 Causal+ Consistency . 82

11 Peer-to-Peer and Mobility 83
11.1 Communication Support assumed so far 83
11.2 Interconnect Support . 84
11.3 Peer to Peer Systems . 85
11.4 Connectivity in P2P . 86

11.4.1 Approach 1: Centralized entity 86
11.4.2 Approach 2: Flood or Gossip based protocols 86
11.4.3 Approach 3: Distributed Hash Table 86

11.5 Distributed Hash Table (DHT) . 87

12 Distributed Machine Learning 89
12.1 Distributed Machine Learning Approaches 89
12.2 Geo-Distributed ML with Gaia . 91

12.2.1 ASP . 92

4

Su
ch
i

12.2.2 Results from the paper . 93
12.3 Collaborative Learning . 93

12.3.1 Tradeo�s of Using Global Model 93
12.3.2 Collaborative Learning with Cartel 94

12.4 Other stages of ML Pipeline . 96

13 Byzantine Fault Tolerance 97
13.1 Byzantine Failure and Byzantine Generals 97
13.2 Practical Byzantine Fault Tolerance: pBFT 98
13.3 pBFT Algorithm . 99
13.4 Byzantine Consensus vs. Blockchain 101

14 Edge Computing and the Internet of Things(IoT) 104
14.1 Edge Computing? . 104

14.1.1 Closing the Latency/Bandwidth Gap 105
14.1.2 Edge Computing Drivers . 106

14.2 Distributed Edge Computing . 107
14.3 IoT and Distributed Transactions . 108
14.4 Transactuations . 109

14.4.1 Evaluation of Transactuations 110

Index of Terms 112

5

Su
ch
i

Preface

The editor looked at his clothes and asked, "Can you spell cat?".
The boy looked at him and said, "Can you spell anthropomor-
phology?"

� A controversial lady, Left as an exercise to the reader!

These are my notes for CS7210, the Distributed Computing course taught at Georgia
Tech. The intent of these notes is to allow for a review of concepts and act as a
supplement for the lecture material.

These are not o�cial course materials. Also, though I strive hard to ensure the

correctness of the materian, these were created throughout my time as a student,

so there may still be some errors that slipped through. You can refer to the

o�cial recommended textbooks such as Distributed Systems for Fun and Pro�t or

Distributed Systems for a better, deeper look at the concepts covered here.

If you encounter typos; incorrect, misleading, or poorly-worded information; or

simply want to contribute a better explanation or extend a section, please contact

me on Piazza, Slack or via email.

Here, I must take a moment to thank George Kudrayvtsev for creating this incredibly
beautiful LATEX template and being generous enough to make it open source (thus
inspiring me to make LATEX notes at all). Thank you!

6

http://book.mixu.net/distsys/
https://www.distributed-systems.net/index.php/books/ds3/
mailto:snarkitten@gatech.edu
https://teapowered.dev

Su
ch
i

Introduction

"A distributed system is one in which the failure of a computer
you didn't even know existed can render your own computer
unusable"

� Leslie Lamport, Somewhere

1.1 Why study Distributed Systems?

Because they are everywhere!!

Examples of DS applications:

� OMSCS

� FANG: Facebook (social media), Amazon (online shopping), Net�ix (streaming,
CDN), Google (Cloud), etc.

� Enterprise systems (banking, SaaS) hosted on public, private clouds

� Telecommunication industry

� Newer domains: AR/VR, Self-driving cars

� HPC: Massive multi-core

1.2 What is a distributed system?

A system consisting of multiple independent components, that can fail in some way,
intentionally or unintentionally, transiently or permanently, and interacting/collabo-
rating in some manner to complete some common task.

7

Su
ch
i

CHAPTER 1: Introduction

1.2.1 Intuition

I These independent components do not share all information with each other.

I Interact via some form of message passing, and these messages allow components
to in�uence each other's actions

I Messages are not perfectly reliable- can get delayed or lost, leading the intended
receiver to act di�erently that might even lead the whole system to become
unstable.

I Independent computing units must appear as a single coherent computing
entity implies that these units work on a common task/goal.

Definition 1.1: Distributed System

A Distributed System is a collection of computing units that interact by
exchanging messages via an interconnection network and appear to external
users as a single coherent computing facility.

Note that the de�nition does not explicitly mention failures!!

1.3 Simple Model of a Distributed System

� What we show:

� Nodes:

* Receive message from channel

* Take some time to act on it

* Send message to one or more channels

� Messages: Spend some time in the channel and are delivered zero or more
times.

� Time axis: Shows a series of messages and when they happened

� What we abstract out:

� The actual underlying network: Communication channels between nodes,
number of hops, etc.

� Directionality of channels: Treat channels as unidirectional i.e. mes-
sages may actually use the same communication channels underneath, but
treated as separate channels

� Actual processing at the nodes: any processing manifests itself as a) Time
delay at the node b) future messages to the rest of the system

Suchithra Ravi 8

Su
ch
i

DISTIBUTED COMPUTING

� What we can represent: This model is general enough to represent very
di�erent types of systems

� Node failure: Set time taken to process at node to ∞

� Unreliable communication: Set number of times delivered to 0 if dropped,
to >1 if retransmitted.

� Point-to-point vs Multi-cast: Set appropriate number of channels to
which the messages are sent.

1.3.1 More complex model of a Distributed System

Typically, we think of a DS as the set of processing actions that happen at the nodes
and the state changes as a result of those actions. Can include this in our model
by adding a state variable to each node. Note that we are still not representing the
individual processing actions at each node. Actions are triggered in response to
messages and the outcome of the action is a change in state at the node.

1.3.2 Importance of Model

Much of the research in DS is a combination of theoretical predictions based on
building and analyzing models, as well as deployment and practical evaluation of real
systems.

But, why use models at all? BecauseAlternative is too complex: Alternative
is to build a prototype and test under all possible scenarios - would be hard to mimic
the correct number and distribution of nodes.

How to choose a model Any model is de�ned by elements, rules, and assumptions
or model invariants.

I Model invariants: Statements that are always true for a model E.g. "Every
message is delivered on time" -> this assumes lossless message delivery and no
network failure.

To choose a model- we have to ensure it is:

� Accurate: Represents the actual system being studied i.e. some problems can
be studied using the model

� Tractable: Is analysis of the current problem possible using the model

In other words, while choosing a model, pay attention to:

� What problems can we study using this model

� Can we build and analyze solutions for this problem using the model.

Suchithra Ravi 9

Su
ch
i

CHAPTER 1: Introduction

A simple model may be su�cient: as long as we can adequately represent the current
system we are studying and all the possible transitions in the system, we can use the
model.

1.4 What is hard about Distributed Systems

� Asynchrony: Message latency can be zero or bounded or unpredictable or
in�nite. (Most systems have unpredictable or in�nite)

� Failures: Failures can be a "failstop" (sudden stop) or transient or Byzantine
(system is performing incorrect action). Also failures can be in the nodes or in
the network links.

� Consistency: We want a single up-to-date copy of data and all nodes agree on
this copy. But, to come to this conclusion, need to consider concurrency/order-
ing in which various events happened, is the data replicated/cached, etc.

All of these introduce various tradeo�s in the system design.

Alternate way to look at this: in terms of 8 fallacies (i.e. statements that aren't
always true in a distributed system):

Suchithra Ravi 10

Su
ch
i

DISTIBUTED COMPUTING

Assumption/Fallacy How it is violated
Network is reliable The network may be unreliable and messages can

be delayed or lost.
Latency is zero Real networks have non-zero (sometimes un-

bounded) latency for packet delivery.
Bandwidth is in�nite Real networks have �nite bandwidth, so there is a

limit to the number of simultaneous messages sen-
t/received.

Network is secure Naturally, network may be insecure and this can
a�ect message passing in the form of bandwidth
choking or even malicious manipulation of messages
passed

Topology doesn't change If some components fail or new components are
added (or a failed component is repaired), the net-
work topology changes. There may also be other
changes to topology.

There is one administrator In a large system, having a single administrator
may be ine�cient forcing systems to use consensus
(and maybe no administrators!)

Transport cost is zero Transport cost in terms of infrastructure/band-
width, as well as energy is realistically non-zero.

Network is homogenous Some parts of the networks may be slow or even
shut down for various reasons, making the network
non-homogenous.

We will have to build systems that will work despite these assumptions becoming
false.

1.5 Properties of a Distributed System

� Consistency: The system gives correct answers always

� Availability: The system provides responses always

� Partition Tolerance: The system provides responses irrespective of failures
or delays in nodes/network

Consistency also implies that the system should act as a single unit. For this, it
should co-ordinate actions by multiple components in the presence of failures and/or
concurrency.

Other desirable properties include:

� Fault-Tolerance: System should recover from component failures without per-
forming wrong actions

Suchithra Ravi 11

Su
ch
i

CHAPTER 1: Introduction

� High Availability: System should restore operations and resume services even
after components have failed

� Recoverability: Failed components can restart and rejoin system after failure
has been resolved.

� Scalability: System should operate correctly even after some aspect of the
system (including load/users) gets scaled to a larger size.

� Predictable Performance: System should maintain performance despite fail-
ures

� Secure: System should authenticate access to data, state maintained and ser-
vices provided

1.5.1 Correctness

Intuition : If we gave the same set (or series) of inputs to a distributed system and
to a single computing entity, the distributed system should give the same outputs as
the single entity for it to be correct.

Problem is: each node in the DS actually receives a separate set of inputs. So, to act
like a single for the single entity, the inputs should be delivered in the same order i.e.
we are concerned not just about order of inputs ot a single node but global order of
inputs across all nodes. Also, all participants should agree that this is the order in
which events occurred.

Consistency Model: is a set of guarantees provided by the system about the or-
dering of events.

Di�erent types of consistency models are possible:

� Strict Consistency: Guarantee that all events and changes in the system will
have a single, uniform order and all parties agree upon this order.

I Almost impossible to achieve: Impossible to guarantee all nodes will have
the same notion of time.

� Linearizable: Transactions (i.e. Group of operations that read/modify some
shared state) will not appear to be interleaved with other ongoing transactions
i.e. the transactions will appear to be in linear order, even though individual
operations are not.

� Serializable: The system guarantees that the outputs correspond to some or-
dering of the transactions, but this need not correspond to the real-time ordering
itself. (this could have occurred on a single node, but need not have.)

I All nodes in the system should still perceive the same ordering.

Suchithra Ravi 12

Su
ch
i

DISTIBUTED COMPUTING

1.6 Brewer's CAP Theorem

This is actually a conjecture, not a theorem since it was never proven!

Theorem 1.1: CAP Theorem

A Distributed System can never simultaneously meet all 3 properties: Con-
sistency, Availability and Partition Tolerance.

If a network partition occurs, you can have Consistency or Availability, but not both.
Note: We can have both if there is no network partition (i.e. partition tolerance is
not there).

Systems are often classi�ed by the CAP tradeo�s they make (or guarantees they
provide):

� P+A: Key-value stores like Cassandra, DynamoDB

� P+C: Megastore, MySQL Cluster

Despite what CAP theorem says, in practice, slow response = no response!
=⇒ If a system is "available" but has high latency, it is not really available
=⇒ Actual tradeo� is between Latency and Consistency

Theorem 1.2: PACELC

If there is a partition (P), how does the system trade o� availability and
consistency (A and C); else (E), when the system is running normally in
the absence of partitions, how does the system trade o� latency (L) and
consistency (C)?

Suchithra Ravi 13

Su
ch
i

Remote Procedure Call

2.1 Client-Server Architecture

Common architectural pattern for building distributed systems

� Clients: Some nodes in the system that send requests and/or data to the server
nodes

I Client has to �nd the address of the server it will contact

I Client may need to establish connection with that server (depends on
protocol)

I Client has to copy "arguments" for its request from its memory to network
packets

� Servers: Nodes that receive the request and "process" it

I Processing may include accessing database to retrieve data

I Copies data from server memory into netork packets to send to client

� Note here that the server and client could reside on the same machine

2.1.1 Challenges

� Discovery and binding: Client needs to �nd the server and establish connec-
tion

� Identifying interface and parameter types: Client needs to know the op-
eration and the parameters required for it

� Data representation: Client and server should have previously agreed on how
data will be represented

� Explicit Data management necessary: Data needs to be explicitly copied
from the network packet bu�er to server/client memory

� Unpredictable Execution time: Results may arrive at arbitrary time de-

14

Su
ch
i

DISTIBUTED COMPUTING

pending on network/server delays.

� Unknown Cause of failure: Client cannot tell if failure in network or server
(or even type of failure)

I All the problems above must be explicitly handled.

2.2 Role of RPC

� Address challenges above and simplify client-server interaction

� Hide complexity of distributed programming and make it similar to program-
ming single node systems

I Why? When these were developed, local programming was centered around
procedures and procedure calls

To achieve its goals, RPC needs to provide the following:

� Service registration mechanism: Servers should be able to register the ser-
vices they provide + clients should be able to �nd out that information

� Connection establishment: Support for any connections to be established

� Interface speci�cation: Client should be able to �nd out what are the pa-
rameters required and results returned

� Type speci�cation: Client should be able to �nd data type and order for
parameters and results

� Data management: System should manage the data transfer from/to memory
to/from network bu�er

� Also referred to as serialization (marshalling) and deserialization (un-
marshalling)

� Serialized bytestream has service descriptors (metadata) along with pa-
rameters/results (data)

� Dealing with failures: Support to deal with failures

� Timeout and retry for transient failures

� Timeout and give some error message for permanent failures

2.3 Architecture of RPC System

� Topmost level: API: Programming interface that clients and server applica-
tions use e.g. making RPC call

Suchithra Ravi 15

Su
ch
i

CHAPTER 2: Remote Procedure Call

� Second Level: Stubs: RPC Call jumps into the stub layer. The stub
layer knows about the procedure arguments/results -> Performs Data mar-
shalling/unmarshalling

� Lowest Level: RPC Runtime: Connection management, sending/receiving
data, failure management

� Other Components:

� Interface De�nition Language (IDL): Used to create interface speci-
�cation (servers describe services, arguments etc.)

� RPC Compiler: Compiles IDL and spits out stub (and other code)

� Service registry: Establishes rules on how servers would announce their
services

How this is actually used :

1. Server developer develops app

2. Server developer provides speci�cation in IDL

3. RPC Compiler compiles this spec

4. RPC Compiler generates stub code + skeleton server code

5. Implementation of the app service added to the skeleton server code

6. Service registered into the registry

7. Client writes client side code that calls the app

8. Client compiles this code with the code generated from RPC compiler

9. RPC Runtime takes care of everything else at runtime!!

2.4 Anatomy of an RPC Call

Assume server implements some operation op(arg1, arg2) that the client cannot per-
form by itself i.e. To do op, client needs to send the op, arg1, arg2 to the server.

Goal of RPC: To make this work like a regular function call (do everything else under
the hood).

Client Side :

1. Client makes function-like call res = op(arg1, arg2)

2. Program Counter jumps to the stub implementation of this function (instead

Suchithra Ravi 16

Su
ch
i

DISTIBUTED COMPUTING

of the local memory address of the procedure implementation)

3. Stub creates a bu�er with function descriptor and arguments required for the
procedure in the format expected by server.

4. RPC runtime takes care of connection establishment, etc. required to send
message

5. RPC runtime sends a message to the server with the bu�er information

Server side :

1. Message received is given to the RPC Runtime which gives it to the stub

2. Stub unmarshals arguments and determines which function has to be called

3. Stub calls the actual local implementation of the function

4. Function is executed and returns results to Stub

5. Control comes back to the server side stub

6. Stub populates the message bu�er with the result

7. Stub sends the message back to the client

Back on the client side :

1. Client stub unpacks the result

2. Client Stub quietly places it in the memory location expected

3. Control returns to voila the original calling function

4. Calling function can extract the result from the memory location as if all of

this just happened locally!

2.5 Invocation Semantics of RPC Operation

RPC operations can be classi�ed along di�erent dimensions:

Classi�cation based on control transfer

� Synchronous RPC operations: Blocking operation where client thread waits
on RPC call to complete

I Client makes RPC call -> waits for response

I Calling thread cannot move forward till the RPC response is received.

Suchithra Ravi 17

Su
ch
i

CHAPTER 2: Remote Procedure Call

� Other threads might continue to run, even make other RPC calls, and wait
for those!

� Asynchronous RPC operations: None-blocking operation where client makes
RPC call but continues to do other operations.

I Client makes the RPC call -> does other actions (not dependent on call)
while waiting

I All independent tasks completed -> client checks if rpc response available
-> Processes result or waits

� Obvious advantage: Hides latency

I Registering a callback: Client can choose to be noti�ed when the response
arrives and specify the things that need to be done when it does.

Classi�cation based on guarantees about message delivery

A local procedure call executes exactly once and returns a result. Here, lack of
response from procedure implies deadlock or failure. If the procedure hangs or crashes,
we can always assume (correctly) that the procedure never executed, and the solution
is to restart and redo the operation. In other words, the caller of the procedure always
knows whether the call was executed or not.

In a distributed system, no guarantee that the server will respond. But lack of
response does not imply failure. It might simply be because of network issues: request
lost, response lost, etc. But it may also be a real server failure. Rerunning may have
undesirable e�ects (if the command was previously executed, can corrupt the data-
like append operation in Project2.)

Distributed Systems may give di�erent types of guarantees about execution:

Invariant Definition 2.1: Exactly Once Execution

The ideal scenario: Commands executed exactly once (similar to local pro-
cedure calls)

I Client side: timeout and retransmit if no response

I Server Side: Distinguish between repeated requests, �lter if needed

� may not be needed e.g. if add operation with both arguments
speci�ed on the call, redoing operation is ok.

I Dealing with persistent failure (e.g. server node failure)

Suchithra Ravi 18

Su
ch
i

DISTIBUTED COMPUTING

Invariant Definition 2.2: At Most Once Execution

Slightly worse scenario: executed once or not at all

I Server Side: Distinguish between repeated requests, �lter if needed

I Client side:

� Timeout and retransmit if no response

� Client knows the command may not have been executed

Invariant Definition 2.3: At Least Once Execution

Third option: Executed once or more (but never none)

� Client side: Timeout and retransmit if no response

� Server Side: No guarantee that dupicates will be eliminated

Other semantics also possible: e.g. if it works with multiple replicas, system may
guarantee that calls will be replicated in all replicas or at least in one replica etc.

2.6 Examples of RPC Systems

� sunRPC: Original RPC developed by Sun in the 80's

� SOAP, CORBA: Older systems used in enterprise solutions

� Apache Thrift

� gRPC

Some of these RPC systems are specialized for speci�c contexts, e.g. high-speed
(low latency), reliable network, embedded environment (optimizations to ensure small
footprint), etc.

2.6.1 gRPC

Released by Google around 2016 - inspired by sunRPC.

� Relies on protocol bu�ers which allow us to describe interface, perform data
serialization, etc.

Suchithra Ravi 19

Su
ch
i

CHAPTER 2: Remote Procedure Call

� Interface speci�ed in a .proto �le, which is compiled to generate protoc �le

(Refer to gRPC code example)

Suchithra Ravi 20

Su
ch
i

Time in Distributed Systems

People like us who believe in physics know that the distinction
between past, present and future is only a stubbornly persistent
illusion

� Albert Einstein, Letter to Michael Besso

3.1 The Time Problem

Physical Time: Time that we read o� some "physical" clock.

3.1.1 Why do we need to measure time in DS?

In a single node, easy to determine sequence (i.e. ordering) of operations uniquely.

Why do we need to know the order?

� Causality Helps determine causality i.e. if one operation a�ected another ->
needed for correctness, consistency.

� Resource Allocation Important for resource allocation, especially if we want
to maintain some properties like fairness.

� Garbage Collection Useful to perform garbage collection. Can deduce if the
results of an operation are no logner needed and free up resources.

3.1.2 Why is measuring time hard in DS?

Why can't we simply read the local clock at each node to determine the ordering of
operations? For messages, whose clock should we read?

21

Su
ch
i

CHAPTER 3: Time in Distributed Systems

Option 1: Receiver-based Timing

Use the time at the receiver's end to maintain ordering. Problem: Because of network
delays, messages may arrive out-of-order!

E.g., node n3 receives message m1 from n1, then receives m2 from n2 and concludes
that m1 happened before m2. But this need not be the correct order because:

� There are no guarantees about network delays and packet losses i.e.
m2 might have happened earlier, but the packet might have taken longer to
arrive.

� Di�erent nodes may infer di�erent orders e.g. if the same messages are
also sent to node n4 that is, say, closer to n2, it might receive message m2 before
m1 and infer the exact opposite order as n3!!

� Some messages may never arrive!! Messages can get lost forever (in�nite
delay), in which case no order can be inferred for those events!

So clearly, we cannot rely on the timestamp at the receiving node.

Option 2: Sender-based Timing

Stamp each message with local timestamp at the sender. Expect order to be unique
and same as actual occurrence of events at the sender.

Not so fast!

Problem: Clocks may ont be globally synchronized. If there is a large enough
skew between 2 senders, the ordering may be wrongly reported.

E.g. If clock at n1 is running slightly ahead and reports a later timestamp than the
clock at n2, even though the messagem1 actually happened beforem2, the timestamps
received by n3 indicate the opposite, so the wrong order will be inferred.

Thus we can see measuring time is hard in Distributed Systems for the following
reaons:

� Consensus/Synchronicity: All nodes need not agree on what the global time
is

� Network delays: Message propagation need not take �xed (or predictable)
amount of time. Network delays need not be constant or even consistent across
nodes (i.e. some nodes may see greater delays in sending/receiving messages
than other nodes)

� Failures: Both nodes and network connections can fail at any time.

� Malicious nodes: For instance, we can't trust all the timestamps we receive.

Suchithra Ravi 22

Su
ch
i

DISTIBUTED COMPUTING

3.1.3 Logical Time

Physical clocks clearly unusable, but we still need some concept of time measurement.
Solution: Logical clocks!

Logical clocks do not measure same kind of "time" as physical clocks. Instead, log-
ical clocks generate timestamps which can be used to infer the real ordering and
relationship of events in a distributed system. There are 3 types of logical clocks:

I Scalar Clocks (Lamport Clocks)

I Vector Clocks

I Matrix Clocks

3.2 Representing Time and Sequence

This section describes some common notation and terms we shall use later on.

� Processes represented by pi generate events represented by eki .

� Happens before: If a process pi generates events e
0
i , e

1
i , e

2
i . . . e

k
i , e

k+1
i , . . . eni .

Here each event eki happens before ek+1
i , represented by eki → ek+1

i Thus,

eki → ek+j
i ∀j ≥ 1

� Process history: ordered sequence of events in process pi represented by Hi.

Note: We often focus on messaging events (sending or receiving), rather than internal
events, since the impact of messaging events on other nodes is clear.

Definition 3.1: Happens Before Relationship

The happens before relationship is a relationship between 2 events de�ned
by the following rules:

� At any node i, an internal event k happens before internal event k+1
i.e. internali(k)→ internali(k + 1)

� At any node i, receiving message k happens before sending the next
message i.e. recvi(mk)→ sendi(mk+1)

� Across two nodes i and j, sending of a message happens before receipt
of the message elsewhere i.e. sendi(mk)→ recvj(mk)

Suchithra Ravi 23

Su
ch
i

CHAPTER 3: Time in Distributed Systems

3.2.1 Time Diagrams

Alternate way to represent the sequence of events is using Time Diagrams.

� Processes are shown as horizontal lines

� Dots on the lines indicate di�erent events

� Messaging events are represented by arrows that connect the send event on
one process with the receive event on another (with the arrowhead pointing
towards the receiver)

� Arrow-less dots represent internal events.

Definition 3.2: Concurrent Events

Two events may be such that there is NO happens before relationship be-
tween them. Such events are said to be concurrent.

E.g. message m1 goes from node p1 to p2 and m2 goes from p3 to p4. If
these are completely unrelated processes, no relation between these events
i.e. if e1 = send1(m1), e2 = send3(m2),

e1 6→ e2 and e2 6→ e1 =⇒ e1 ‖ e2

.

I Either event could have actually happened before the other

I Swapping the order between the events has no impact on rest of the
system

I Both events may still have happened before a di�erent event e3

e1 → e3 and e2 → e3

3.3 Clock Consistency

Invariant Definition 3.3: Clock Consistency Condition

To be useful, a logical clock should timestamps that re�ect the actual rela-
tionship between events. This is stated as the Clock Consistency condi-
tion.

Say logical clock C produces timestamps C(ei) for each event ei.

� Monotonicity If 2 events are connected by a happens before rela-

Suchithra Ravi 24

Su
ch
i

DISTIBUTED COMPUTING

tionship, their timestamps need to re�ect that.

e1 → e2 =⇒ C(e1) < C(e2)

Thismeans that a clock cannot produce the same timestamp repeat-
edly or timestamps decreasing in value.

� No implication for concurrent events:

e1 ‖ e2 =⇒ C(e1)??C(e2)

Strong Clock Consistency: Logical clocks that satisfy this property guarantee
that we can determine the order of events uniquely by looking at their timestamps
i.e. with stongly consistent clocks,

e1 → e2 ⇐⇒ C(e1) < C(e2)

Logical clocks are clocks used to map the history of events in a process to a partially
ordered time domain T . Why partial? Because we cannot have a "complete" order
if there are concurrent events.

A clock function C is de�ned as the set of rules that must be followed to produce
proper, consistent timestamps.

To implement a logical clock, we need to decide upon

I A data structure to represent the timestamps

I Rules that will be followed to advance the time.

3.4 Lamport's Scalar Clock

Each node has its own implementation of the clock, which executes clock rules to
produce timestamps. A node only knows the value of the clock that it computed, but
all nodes see the clock as a single scalar value.

3.4.1 Clock De�nition

� Data Structure: Each process pi has its own clock Ci and the timestamp
produced is a scalar

� Rules to generate timestamps: The rules can be derived by considering the
rules for the happens before relationship.

� For 2 internal events a and b where a happens before b, if a = eki and
b = ek+1

i ,
eki → ek+1

i =⇒ C(eki) < C(ek+1
i)

Suchithra Ravi 25

Su
ch
i

CHAPTER 3: Time in Distributed Systems

. Therefore, pi increments Ci between successive events.

Ci(b) = Ci(a) + 1

� For 2 related messaging events a = sendi(mk) and b = recvj(mk) in pro-
cesses pi and pj respectively,

sendi(mk)→ recvj(mk) =⇒ Ci(sendi(mk)) < Cj(recvj(mk))

But, Cj(recvj(mk)) has to be greater than any other internal event at pj
that happened before the arrival of the mesage mk at pj as well. Therefore,

Cj(b) = max(Ci(a) + +, Cj)

3.4.2 Clock Correctness

Note that 3 types of time relationships are possible with this clock: (See lecture
example)

1. One event happens before another

2. One event is concurrent with another

3. There is no clear order between 2 events. These will also be inferred to be
concurrent!!

Note:

1. Last point above is not a problem for Lamport's clock because it only satis�es
the clock consistency condition and not the strong consistency condition. (See
below)

2. Even if we conclude 4@p2 → 3@p1 (based on their timestamps), it is ok because:

� concurrency implies that swapping the order between them will not impact
the rest of the system.

� all observers in the system will make the same, uniform conclusion about
the ordering.

Thus, Lamport's clock gives a mapping from all events in the system to a partially
ordered list of timestamp events. (Partial because there is no order among concurrent
events).

To establish total order, need some tie-breaking rule e.g. Events with same timestamp
from 2 di�erent processes can be ordered based on the process ID, i.e. 3@p1 → 3@p2.
As long as everyone in the system uses same tie-breaking rule, the actual rule itself
doesn't matter, since any consistent order between these events is acceptable.

Suchithra Ravi 26

Su
ch
i

DISTIBUTED COMPUTING

Event counting

: If timestamps are always incremented by 1, the clock can be used to estimate the
minimum number of events in the system that occurred before the current event,
including events in all nodes, even nodes that have not previously communicated with
this node in the past. Of course, this is a minimum estimate, so actual number of
events in the system may be much larger.

Lamport's clock is consistent, but not strongly consistent!

e1 → e2 =⇒ C(e1) < C(e2)

C(e1) < C(e2) 6=⇒ e1 → e2

Impact of consistency vs. strong consistency

� We cannot rely on Lamport's clock to get complete information about causality

� Consistency alone is su�cient for correctness, since ordering can be inferred
everywhere that it is needed

� Lack of strong consistency leads to some loss of e�ciency, because unrelated
events may appear to be related and to require a speci�c ordering, which may
be enforced by the system. E.g. 5@p2 appears to be earlier than 6@p3 though
they are concurrent. System may try to enforce ordering even though it is
unnecessary.

3.5 Vector Clock

Vector Clock is a vector of scalars with dimensionality of vector ∝ number of nodes
in the system. (=⇒ Size overhead: O(N) (unlike O(1) size of scalar clock)) More
powerful than Scalar clock, but also a more complex clock.

3.5.1 Clock De�nition

Basic idea:

� Each node maintains its own view of its own time as well as time at other nodes

� Each node has a copy of the vector of size n, and each element of the vector
corresponds to the current nodes perception of time in the i'th node.

How it works: Say process pi has clock vti

� If Ci is the i'th Lamport clock of process pi,

vti[i] = Ci

Suchithra Ravi 27

Su
ch
i

CHAPTER 3: Time in Distributed Systems

� If C ′j is the pi's perception/knowledge of the Lamport clock in process pj,

vti[j] = C ′j

Rules to update the vector clock:

1. Before executing any event, update own clock:

vti[i] = vti[i] + d for d > 0

2. Each message carries the vector clock vt of the sender at sending time. When
a message is received, the receiver :

(a) Update its knowledge of global time i.e. of all other processes

vti[k] = max(vti[k], vt[k]) for 1 ≤ k ≤ n

(b) Execute rule 1 for itself i.e. update its own time

(c) Deliver/process the message

I Rule 1 ensures that later events in the same process will always have a larger
timestamp than older events

I Rule 2 ensures that before a message is processed, the recipient has the latest
view of the system (either the same view as the sender, or a more advanced
view). This means when the message is actually processed, its timestamp will
be greater than all the events at the sender as well as at the recipient (since
rule 1 is also executed!)

Rules to compare vector clocks:

� If all the elements in vector vt1 are lesser than or equal to all the elements in
vt2,

vt1 ≤ vt2 if vt1[i] ≤ vt2[i]∀i

� If all the elements in vector vt1 are lesser than all the elements in vt2 AND at
least one element in vt1 is strictly lesser than vt2,

vt1 < vt2 if vt1[i] ≤ vt2[i]∀i AND vt1[k] < vt2[k] for some k

� If 2 timstamps are such that neither is strictly less than the other, they are
considered to be concurrent.

vt1 ‖ vt2 if !(vt1 < vt2) AND !(vt2 < vt1)

Suchithra Ravi 28

Su
ch
i

DISTIBUTED COMPUTING

Vector Clock is both consistent and Strongly consistent!

� Consistent because if one event occurs before another, the timestamp is de�-
nitely lesser.

� Strongly consistent because if the vector clock indicates concurrency of events,
the events are guaranteed to be concurrent.

Thus, vector clocks provide a stronger consistency and higher e�ciency (since we will
no longer reorder unnecessary concurrent events (See consistency discussion)) at the
cost of maintaining O(N) extra state i.e. additional clock state at each node, but also
additional data sent with each message. Some of this can be reduced by using some
compression techniques.

3.6 Matrix Clock

Assume process pi has matrix clock mti.

� Extend vector clock to a matrix -> represent time as a matrix.

� The clock value at (i,i) for matrix clock of the i'th process holds its own scalar
clock

mti[i, i] = Ci

� The clock values at row i of the i'th process hold its vector clock (similar to
above)

mti[i] = vti

� The clock values in all other rows (say k) hold what process pi thinks the vector
clock of process pk is.

mti[k] = vt′k

� Every process maintains its view of every process' view of time (and not just
its own view of every process' time)

Obviously more complicated, and more storage required. So what do we gain? Since
each clock knows what other clocks think about everyone's view of time, garbage
collection is possible.

E.g. we know that process 2 thinks that its own time is X and process 3's time is
Y, if process 1's time is greater than both X and Y, any state concerning process 2
and 3 stored in 1 can be cleaned up. In other words, if mti[k, j] > t, that is- if "i's
perception of what k thinks j's time is" is >t, then everything before t can be deleted.

∴ min(mti[k, j]) > t =⇒ everything before t can be deleted!

Suchithra Ravi 29

Su
ch
i

State in Distributed Systems

Everything is in a state of �ux, including the status quo.

� Robert Byrne, The 637 Best Things Anybody Ever Said

4.1 The problem of State

Goal is to capture a correct snapshot of global state in the distributed system.

4.1.1 What is state?

Intuition: A distributed system is de�ned as a set of nodes connected by commu-
nication channels The state of this system is then the state of the nodes and the state
of the channels. To execute a program, each node goes through a series of events,
both internal and message send/receive events. Therefore, the state of the distributed
system is de�ned by the sequence of these events. So, we also need to capture state
transitions and their sequence.

Thus, state consists of:

� Process State: determined by all events that happened on that node until
that point.

� Channel State: determined by the messages currently in-�ight i.e. send events
not paired with a corresponding receive event on another node.

� State transitions: Any event changes state of at least one of the components
i.e. nodes or channels.

� Internal events → modify state of single node.

� Message send/receive events → modify state of 1 node + 1 channel.

� Ordering of events = sequence of state transitions.

30

Su
ch
i

DISTIBUTED COMPUTING

� Actual run: Actual sequence of events (or state transitions) that hap-
pened in a system

� Observed run: Sequence of events that we observe.

I IMPORTANT: This may not correspond to the actual run!

* We may not observe one of the events that actually happened, or we
may not know the strict ordering between 2 events

4.1.2 Cuts

� Cut: A curve that "cuts" the execution time in some manner so that events
that occur before the cut are assumed to be completed.

I In the case of a message in-�ight, this means the send event was completed
even if the receive wasn't.

� Consistent Cut: A snapshot of the system that divides the execution events
so as to provide a possible ordering of events in the system.

I Consistent cut need NOT correspond to a real situation that the system has
actually been in, but it captures one possible situation that is "consistent"
with the ordering of the events in the system.

� Pre-recording events: All events that happened before the time of taking
the snapshot (or before the cut) in the system.

� Post-recording events: All events that happened after the time of taking the
snapshot (or before the cut) in the system.

Intuition for cuts : Think of the cut as a line we draw on the time diagram
representation of the distributed system.

I Not a strict line because we cannot guarantee that we can get a precise cut
at the exact same time on all nodes. Our best guarantee is to get a cut that
indicates the completion of certain events in each node.

I Any cut is NOT a consistent cut i.e. a general cut does not have to give
a "correct" description of the system.

I Can make deductions about events:

� In-�ight messages: By looking at completed messages at any point, we
can also deduce which messages are in-�ight (i.e. send completed but
receive was not completed.)

� Older events: If a message receive event happens prior to the cut, the
send event also de�nitely happened before the cut. Similarly, if event ek+1

i

occurs before the cut, event eki de�nitely does.

Suchithra Ravi 31

Su
ch
i

CHAPTER 4: State in Distributed Systems

I Note that: A cut that has, say a receive message event preceding it, but no
corresponding send message event, would not be considered consistent.

4.1.3 Challenges in capturing state

Capturing state in a distributed system is hard for multiple reasons:

� No instantaneous recording

� No globally synchronized clock: Cannot ever capture events at each
node at exactly the same time.

� No centrally initiated snapshot: For the same reason, cannot assume
that a centralized node will be able to instantaneously initiate a snapshot
of all the other nodes.

I Random network delays imply that even if Node X initiates a snapshot
at t0, node Y and node Z may take the snapshot at times t1 and t2
with no guaranteed ordering between them.

� Non-determinism

� Non-deterministic Computation: Because of concurrent events, at any
point, we can have multiple possible next events → Makes ordering, con-
sistency etc. hard even with a single, multithreaded system.

I Deterministic Computation means that at any point int he execu-
tion, there is at most one event that can happen next.

4.2 System Model

For the remainder of this chapter, we will use the following model of a distributed
system:

� System consists of processes pi that communicate by exchanging messages via
channels ci

� Channel properties:

� Directed: any channel carries messages in only one direction =⇒ possible
to have 2 processes p and q where p can send messages to q but not the
other way around!

� FIFO: messages are delivered in the order in which they are sent

� Error-free: messages will not be corrupted

Though channel assumptions are not applicable to all systems, any system can be
made to satisfy these properties by using TCP as the communication protocol (since
TCP guarantees these properties).

Suchithra Ravi 32

Su
ch
i

DISTIBUTED COMPUTING

4.3 Finding a Consistent Cut

Goal of the algorithm :

� Capture snapshot of all distributed components i.e. Processes and channels

� Ensure the snapshot forms a consistent cut.

Example : (See �gure in lecture) Consider 2 processes exchanging a sequence of
messages. For the example, ignore all internal events and consider only message
send/receives.

1. The processes start in initial states S0
p , S

0
q . Say, we try to capture the snapshot

of the system at some point, S1
q .

2. We send a marker to the other node p (to capture a snapshot). Say the marker
arrives at p at S2

p . This point is after m3 has been sent by p.

3. To �nd hat happened to m3, send another marker message from p to q. Say
this message arrives at S3

q

4. Now, at q, we realize we already took a snapshot of this node. This snapshot
indicates that m3 has not arrived at q yet.

5. This means, the message m3 must be in-�ight.

Based on these steps, the recorded snapshot is :

I P is at S2
p , Q is at S1

q , Channel PQ has m3 in �ight, channel QP is empty.

I Recorded global state = (S2
p , S

1
q), (m3, 0)

Chandy-Lamport's Snapshot Algorithm

� initiator node is the node that will trigger the algorithm for capturing the
state of the distributed system.

� save its local state

� send a marker token on all of the outgoing channels and all of the outgoing
edges.

� All of the other nodes in the system will participate in this algorithm

� On receiving the �rst marker on any incoming edge, they will save their
state, they will mark the state of the incoming channel as empty

� propagate a marker message on all outgoing edges

� t resume execution, but they will also save incoming messages until a
mark, on any of the channels until they see a marker arriving through that

Suchithra Ravi 33

Su
ch
i

CHAPTER 4: State in Distributed Systems

particular channel.

� When a marker does arrive on one of the incoming channels, then the
process will mark the state of that channel. Such that all of these messages
that were received since the process captured its state originally, all of these
messages will be marked as messages that were in-�ight.

This algorithm guarantees a consistent state (but not necessarily the state we actually
went through previously or the state in which system is currently!)

4.3.1 Assumptions of the algorithm

� There are no failures and all messages arrive intact and only once. And we said
that current technologies such as TCP/IP will allow this assumption to be true.

� The communication channel are unidirectional. And this really just means that
we need to separately consider each direction of the point-to-point message
exchanges among the processes.

� communication channel is FIFO ordered. TCP can give us the FIFO property

� does not interfere with the normal execution of the processes. Meaning that
the markers, they don't stall or reorder the processing of the other messages.
This is also in principle practically doable. You can just have a separate task or
a separate thread that uses a separate socket and port number for the marker
messages.

� And also it means that each process in the system records its local state and
the state of all of its coming channels. assumption here that there are enough
resources to be able to do this

4.3.2 Properties of state captured

� Captures a consistent state

� Doesn't necessarily tell us where the system exactly is in its execution at this
speci�c point of time

� Observed global state is a permutation of the actual state or one of the other
global states in this tree.

What does the last point mean? If we draw a tree of possible states of the system
(i.e. start at initial state , then choose who sends the �rst message , etc. basically have
multiple child branches for di�erent concurrent next events), the algorithm results in
one of the possible states in this tree.

If we execute the algorithm at one point in time, we can capture di�erent sequences
of states: E.g. we execute at S21, we can capture either (a) S10, S11, S21 for run

Suchithra Ravi 34

Su
ch
i

DISTIBUTED COMPUTING

that consists of events e11, e21, e12, or (b) S01, S11, S21 for run that consists of
events e21, e11, e12 Obviously, both end in S21 and both correspond to consistent
narratives of sequence of events so far.

4.4 Global State

4.4.1 Formal de�nition

If state recorded is S∗, sequence of computations done so far is seq, and the true
initial and �nal states of the system are Si and Sj.

� Recorded state S∗ must be on some path from Si to Sj. In other words, S∗ is
reachable from Si and Sj is reachable from S∗

� There exists some sequence seq∗, which is a permutation of seq which we can
take from Si to Sj passing through S

∗

� In this sequence, we know that S∗ can be either the initial event or it happened
after the initial event Si i.e. S

∗ = Si or Si → S∗

� Similarly, S∗ can either be the �nal event or it happened before the �nal event
Si i.e. S

∗ = Sj or S
∗ → Sj

Theorem: If we follow the Chandy-Lamport's algorithm, for an execution of the
system (seq∗), which takes the system from an initial state (Si) to a termination
state (Sj), the recorded state (S∗) is such that it is reachable from the initial
state and the termination state is reachable from the recorded state.

Again, recorded state need not be a real state that the system actually went
through!

4.4.2 Bene�ts of Global State

The algorithm allows Stable property detection which allows us to do better
garbage collection, and Unstable property detection, which can help detect cor-
rectness/consistency issues.

Stable property is a property of the system which once it becomes true, it remains
true for the remainder of the execution of the system. E.g. Deadlock, Termination,
Token Loss.

� If we know that some phase completed by S∗, then it de�nitely completed before
the �nal state Sj, so we can do gc for it now.

� If a stable property is true in S∗, then it is de�nitely true in Sj (since it is valid
for te rest of the execution).

Suchithra Ravi 35

Su
ch
i

CHAPTER 4: State in Distributed Systems

� If a stable property is false in S∗, then it is de�nitely false in Si (because if ti
were true in Si, it would be true for the rest of the execution).

Unstable property is one for which there is no guarantee that once it becomes true
it remains true for forever. E.g. Bu�er Over�ow, Race condition, load spike, etc.

Since S∗ might not have really occurred, if an unstable property is true in S∗ it need
not be true in the actual system or in the �nal state Sj (sine unstable properties are
transient). If we observe an unstable property to be true in S∗, which is a possible

state, then we know that this property can occur in the system for some valid sequence
of actions (which is obviously a bad thing!) - like bug detection!

To summarize,

� For stable property y, if

y(S∗) = true =⇒ y(Sj) = true

� For unstable property y, if

y(S∗) = true =⇒ y(Sj) could possibly be true

Suchithra Ravi 36

Su
ch
i

Consensus in Distributed Systems

Science is really about individual experts reaching a consensus.

� Alan Stern, Interview about Pluto's planet status

5.1 What is Consensus?

Consensus is the ability of multiple distributed processes to reach agreement about
something -maybe the value of some shared state of the system, some action to be
taken or even the current timestamp, etc.

Why do we need it? Critical for making forward progress in a distributed system.
Common scenario: Nodes need to agree upon the outcome of a transaction. E.g.
In Project3, �rst process executes a command, responds to the client, then sends
a backup request and dies. If the backup request is lost, the backup server never
executes this and all future clients will see a di�erent result i.e. one indicating this
command was never executed. Reaching a consensus makes it possible for the
system to be correct.

Challenges in reaching a consensus (Discussed earlier):

� Non-determinism

� Lack of global clock

� Network delays

� Failures

� Malicious behavior

The ability of a system to reach consensus implies 3 key properties:

37

https://www.wired.co.uk/article/alan-stern-new-horizons-pluto-mu69-nasa-interview

Su
ch
i

CHAPTER 5: Consensus in Distributed Systems

� Termination/Liveness: Guarantee of forward progress i.e. process should
either move forward to make a consensus or terminate i.e. the non-faulty pro-
cesses eventually decide on a value.

� Correctness/Agreement/Safety: Guarantee that all processes decide on a
single value (I mean, if we are calling it a consensus...)

� Validity/Safety: The value decided on must have been proposed by some of
the processes (like, it can't be some arbitrary value pulled out of thin air!)

5.2 Theoretical Posibility of Consensus

5.2.1 System Model

We will consider the theoretical possibility of achieving consensus by studying the
following model:

� Asynchronous: Messages may be reordered and delayed but not corrupted.

� At-most one faulty process

� Failstop Model: where the node simply stops working.

I Indistinguishable from in�nite message delay in the system, so we can
ignore actual failure type/cause

Obviously, these are simplifying assumptions and real systems are more complex (and
often break these assumptions).

Why is this model still useful :

� If we prove possibility of consensus: Can try to extend result to real
complex systems through further investigation.

� If we prove impossibility: If impossible even in the simple model, obviously
not possible for a complex model.

Some relevant terms :

� Run: Ordering of events in the system

� Admissible Run: Run with one faulty processor and all messages eventually
delivered i.e. similar to the model de�ned above.

� Deciding Run: Run where some non-faulty processors reach a decision.

� Totally correct consensus protocol: Protocol where all admissible runs are
also deciding runs i.e. for any ordering of messages where the model assumptions
are met, the non-faulty processors will be able to reach a decision.

Suchithra Ravi 38

Su
ch
i

DISTIBUTED COMPUTING

� Univalent con�guration: System con�guration in which the system can reach
a single decision (single value). Obviously, this would be part of a deciding run.

� Bivalent con�guration System con�guration in which multiple (or at least
2) decisions are possible. This means, a consensus hasn't yet been reached, so
this cannot be part of a deciding run.

5.2.2 FLP Theorem

Presented in the paper: "Impossibility of distributed consensus with one faulty pro-
cess" by Michael Fischer, Nancy Lynch and Michael Patterson (F.L.P)

Theorem 5.1: FLP Theorem

FLP Theorem states that in a system with one fault, no consensus protocol
can be totally correct.

Proof

Intuition : Under the model assumptions, if it is possible to identify a starting
con�guration and an admissible run where the system does NOT reach a deciding
state (a.k.a ends up in a bivalent con�guration) =⇒ consensus cannot be reached
in at least one con�guration i.e. protocol is not totally correct.

0. Consider a system where nodes are capable of making one of two decisions:
0 or 1.

I Assumptions from before hold: 1 faulty processor, messages are not
corrupted, etc.

1. (Lemma 2 of paper) In a distributed system, there is at least one initial
con�guration where the �nal decision is not known already (i.e. where
result is not known beforehand) =⇒ there is at least one initial bivalent
con�guration.

2. There must be a single event or single message (whose delivery) will convert
the bivalent system into a univalent system.

3. It is possible to delay the delivery of the message in point (2) so that it is
never delivered and thus the system never transitions to a univalent state!
=⇒ An admissible non-deciding schedule does exist for this system!!

From these points, we can conclude that- for a system with 1 faulty node where
messages can be delayed or reordered, there is always an initial bivalent state for
which an admissible non-deciding schedule exists!

Suchithra Ravi 39

Su
ch
i

CHAPTER 5: Consensus in Distributed Systems

Deriving lemma 2 : Initial con�guration depends on schedule of events- some
might have a predetermined solution. But don't have to consider these because the
de�nition of consensus is to choose a proposed (not predetermined) value.

� If we list all the con�gurations with their initial states, then any 2 con�gurations
di�er in the state of at least one process.

� If there is a fault in that di�ering process, the remaining processes form a
bivalent con�guration

I The admissible run in both these con�gurations consist of the same values
(i.e. initial states of the non-faulty processes).

I Final state can have 2 di�erent values (since initial state of faulty process
is unknown or can't be deduced)

I =⇒ 2 admissible runs that can result in di�erent states for the faulty
process, so this is a non-deciding con�guration.

Example: If con�g0 refers to "p0 has 0 as initial state, p1 has 0 as inital state",
while con�g1 refers to "p0 has 0 as initial state, p1 has 1 as inital state", the two
con�gurations di�er in the initial state of p1. So if p1 is the faulty process, then we
have 2 admissible runs, both has p0 ith 0 as initial state, but they cannot decide what
the initial state of p1 is accurately, thus leading to a bivalent con�guration.

5.2.3 Is Consensus Really Impossible?

Given that failures are inevitable and networks have delays, this is our best system
model. So, can we never have a correct distributed system?

Don't give up yet!

Theorem above is based on certain assumptions i.e. Any system that satis�es these as-
sumptions cannot have consensus. But, real world systems that change these asusmp-
tions or system properties can!

This also means that the consensus protocols we shall see will not terminate if the
speci�c conditions are not met (i.e. the assumptions are not broken.)

Suchithra Ravi 40

Su
ch
i

Consensus Protocols

6.1 Goals of Consensus Protocols

Continuing our discussion of consensus from the last chapter, goals of consensus
protocols are:

� Agreement: Multiple parties should agree upon the same value

� Validity: Chosen value must be valid.

� Safety: The term safety refers to:

� Only a value that was proposed is chosen

� Only a single value is chosen and only a single chosen value is learnt

� Liveness: The term liveness refers to:

� Some proposed value is chosen

� Any chosen value is learnt

Liveness is related to forward progress i.e. the system should not be stuck in the
process of choosing. Safety is related to correctness i.e. the system should choose
correctly and consistently. From the De�nition FLP Theorem, we know that we
cannot have both safety and liveness.

3 types of nodes in a consensus protocol :

� Proposers: Nodes that propose a new value for the shared state

� Acceptors: Nodes that evaluate the proposals for the value and choose, often
based on some kind of ordering (like timestamps)

� Learners: Nodes that need to access (read) the value.

41

Su
ch
i

CHAPTER 6: Consensus Protocols

6.2 2-Phase Commit (2PC)

2-Phase Commit(2PC) originated from database community.

� There is always a co-ordinator, who is assumed to not fail

� Phase 1- Vote Collection Phase: Co-ordinator proposes value, participants
vote

� Phase 2- Decision Phase: Co-ordinator tallies the votes, makes the decision
and communicates the decision (commit).

� Blocking protocol: blocks if there is a failure, =⇒ does NOT guarantee
liveness

6.3 3-Phase Commit (3PC)

3-Phase Commit(3PC) also originated from database community.

� Tries to solve the blocking problem above.

� Phase 1- Prepare phase: Votes are solicited

� Phase 2- Pre-Commit Phase: Decision communicated (might lock resources
here)

� Phase 3- Decision/Commit Phase: Perform actual commit here

� Non-blocking: Timeout during phase 2 or 3 causes protocol to abort.

� Problem: Only works with fail-stop model- assumes that a failed node won't
restart (or a timed-out message won't be eventually delivered)

� This means there will be safety issues on fail-restart.

6.4 Paxos

Fun Fact: Original Paxos Paper

The original Paxos paper was written by Leslie Lamport in 1990. However,
the original paper was not accepted by the publication (a lot of people who

don't get humor on this plant, smh!)

Anyway the original paper used the metaphor to describe the following
problem:

� Describes Paxos Parliament has members who pass decrees

Suchithra Ravi 42

Su
ch
i

DISTIBUTED COMPUTING

� The members only work part-time

� They communicate by messages that may be delayed (or someone
may not vote)

� Nobody is malicious

The paper then provided an algorithm with a set of rules they must follow
to agree on a single decree (and multiple decrees i.e. Muti-Paxos)

Essentially, the paper described the consensus problem, provided a solution-
an algorithm that is a state machine of rules/state transitions that must be
followed to achieve consensus, and proof of correctness of the algorithm.

6.4.1 Basics of Paxos

This sections describes the workings of the Paxos consensus protocol.

Assumptions/SystemModel : Systems with asynchronous communication, non-
Byzantine failures

� Agents operate at arbitrary speed

� Agents can have fail-stop failures (stop and restart)

� Agents have some persistent memory to recover information on restart

� Messages can take arbitrary times to reach

� Messages can be duplicated, lost or reordered

� Messages cannot be corrupted

Important underlying ideas :

� State Machine Replication Each node is a replica:

� of the same state machine (or algorithm) that updates the state

� following the same rules to update the state

� Majority Quorum: All decisions based on majority quorum

� Each decision is based on majority quorum, so any 2 decisions will have
some common members who agreed to it → even when some nodes fail,
possible to disseminate the consensus decision

� If some nodes fail and don't participate in a consensus round, when they
restart, they will join a quorum that has at least 1 participant who knows
about the past decisions

Suchithra Ravi 43

Su
ch
i

CHAPTER 6: Consensus Protocols

� Helps tolerate fail-stop and fail-restart failures

� Ordering: Order among messages maintained using timestamps (so we can
tolerate arbitrary message delays and message reordering)

6.4.2 Phases of Paxos

Protocol has 3 phases:

1. Prepare Phase: Node that initiates proposes an agreement round.

I Proposal message timestamped with order number → Allows proposals to
be distinguished/ordered

2. Accept Phase: Gather votes on whether agreement is possible and the value
is agreed upon

� Initiator gathers responses from the participants

� Responses indicate whether they agree to participate, what value they
agree to and timestamp of proposal being agreed to

3. Learn Phase: Agreed upon value learned by all

� Starts once leading node gets enough nodes to agree to commit (quorum)

� Initiator communicates the agreement to all participants with agreement
round and agreed value

� If initiator receives Acks from quorum of participants, it knows this round
is complete

Note:

� Possible to learn in 2 rounds

� Prepare and Accept form the write phase of the value; learn is the read phase

Why use proposal number :

� Proposal number being part of messages - ensures ordering

� Helps with dealing with fail-restart and delayed messages

� There may be multiple ongoing proposals at a time, helps to keep track of
messages

Prepare Phase

0. Each round started by an initiator/leader/proposer

1. Proposer selects proposal number n and sends prepare request (with number

Suchithra Ravi 44

Su
ch
i

DISTIBUTED COMPUTING

n) to acceptors

� n is totally ordered among all processes i.e. unique across all proposals
and all processes

I No two processes can have same n

I Same process can never have 2 proposals with same n

2. The acceptors who receive the message respond with an acceptor response

� If an acceptor receives a prepare request with n greater than any received
so far, responds with promise not to accept any more proposals with value
< n

� If acceptor already received a proposal with a higher n (maybe initiator
did not hear about that proposl number), it responds to prepare request
with the higher value of n so initiator can update the proposal number

Note that:

1. There may be learner nodes that will eventually read the value of this variable
but do not participate in the agreement process

2. Proposer node is simply one of the acceptor nodes (it is not necessarily a separate
node).

I IMPORTANT: Correctness in the case of failure scenarios is achieved through
majority quorum for each step

Accept Phase

1. If a proposer hears back from majority of acceptors, it sends an accept request
or commit message to each of them

� Accept request contins value of proposal number n and proposed value v

� v is the value of highest numbered proposal among the responses in prepare
phase

� If there were no values proposed, proposer chooses a value

2. If an acceptor receives an accept request for proposal n, it accepts the proposal,
unless it has already responded to a higher number prepare request

Learn Phase

� Acceptor receiving a commit message implies the proposed value was accepted
(or) Accepted value now becomes the Decided value.

� Decided value can be communicated to learners (or) learner read requests will
be responded with decided value

Suchithra Ravi 45

Su
ch
i

CHAPTER 6: Consensus Protocols

I Learner also needs to get a majority quorum of responses from acceptors (since
acceptor nodes themselves can fail)

� This means every acceptor has to send the decided value to the learner →
obviously ine�cient!

� Learners, in turn, might notify waiting clients, etc.

Distinguished Learners (No, not you. Although, you are a distinguished learner

too!)

� Choose a distinguished learner that receives accepted proposals from acceptors

� Once it receives proposals from a majority of acceptors, it informs the other
learners

� Alternately, learners send read requests to the distinguish learner whenever they
need (instead of being informed each time)

I This is a common idea in distributed systems: To separate the read nodes from
write nodes

� Ensures that the same nodes don't become bottleneck

� Same nodes serving both end up slowing both reads and writes

Going one step further, can have multiple distinguished learners (at the cost of more
communication)

How to deal with concurrent proposals : What if 2 nodes initiate a proposal
at the same time

� Acceptors that receive proposal with lower number than the one they accepted
will ignore it.

I Irrespective of who initiates the proposal �rst, the proposal with higher number
will be served

� If proposer 1 initiates proposal 1 �rst, but acceptors receive proposal 2
from proposer 2 earlier, they would have already responded ("accepted")
proposal 2, so now proposal 1 is ignored

� Proposer 1 will eventually try later with a greater proposal number

� Ignoring lower proposal numbers ensures poposal 2 can actually get completed
without interruption

I Once nodes agree on a value, this value should persist

� If proposer 1 now re-initiates with poposal number 3:

Suchithra Ravi 46

Su
ch
i

DISTIBUTED COMPUTING

� Acceptors respond with the older agreed upon value and accepted proposal
number

� Proposer 1 will now commit the new proposal 3 with the already accepted
value (from proposal 2)

I Important Note: iF proposal 3 from proposer 1 arrives before proposal 2 was
committed, the proposal 2 would be discarded and newer proposal accepted
instead.

6.4.3 Paxos vs. FLP

Paxos does NOT violate FLP because it is possible to reach consensus but does not
guarantee forward progress (Safety but not Liveness)

� Possible liveness problem- if 2 proposers keep issuing proposals with increasing
numbers before the previous one is accepted

� In each case, no decision is reached and the previous proposal is discarded
in favor of the new one

� Common workarounds:

� Proposers use random delays before retrying with new value (so they don't
always cancel each other)

� Designate a "distinguished proposer" or leader

* Need timeouts to deal with leader failure

� With these workarounds, liveness problem is very unlikely, but not impos-
sible!. =⇒ FLP still holds!

6.4.4 Paxos in Practice

Multi-Paxos

In real systems, obviously there is a series of values to be agreed upon. This is
achieved through Multi-Paxos. (Part of the original protocol)

� Each simple single-decree Paxos is used to agree on an individual value

� E.g. In Google Chubby, Paxos is used to agree on the ID of a node

� Multiple Paxos protocols executed to agree on values and order of operations

Problem: Protocol gets too complicated with too many in-�ight exchanges.

Paxos Optimization

Also known as ViewStamp Replication

Suchithra Ravi 47

Su
ch
i

CHAPTER 6: Consensus Protocols

� Only one proposer allowed to submit winning proposals: Leader for the current
"view"

I Leader only valid for the current group of participants

� If nodes join or leave, need to elect new leader

� All values in system accepted/learned in the order that the leader proposes
them i.e. leader is now responsible for the other nodes

I Obviously, important to accurately detect when "view" or leader needs to be
changed.

Popular Implementations

The following are some implementations of Paxos - not proven to be equivalent (some
are known to di�er)

� DEC SRC (Known by Leslie Lamport himself)

� Google Chubby

� Zookeeper (Open-Source implemented by Yahoo)

6.5 RAFT

Why use another consensus protocol if Paxos already works? (I mean, are

we simply trying to ensure students have more to learn for the mid-term?)

Real reason is: Understandability i.e. Is the protocol su�ciently simple for prac-
tical implementations can be written based on the speci�cation? The speci�cation is
the one proven to work. Obviously, if an implementation does not follow the speci�-
cation, the guarantees provided by Paxos won't work.

Additionally, is the implementation still correct after optimizations are added? Since
even a single round is complex, Multi-Paxos is a lot more so

Solution: RAFT - Proposed by Ongaro and Ousterhout. Shown to be easier to
understand by college students (Isn't that what we really need?)

6.5.1 Phases of RAFT

1. Leader Election Phase: Any node can be a leader, but the one that receives
most votes is selected to be one.

2. Log Replication Phase: Once leader elected, normal operation: Leader makes
proposals for updates

I Every new leader election starts a new term (similar to "view" above.)

Suchithra Ravi 48

Su
ch
i

DISTIBUTED COMPUTING

I Leader can be active for an arbitrary duration (or number of updates)

I Separating the leader election phase is good beacause:

� Makes it easier to reason about the implementation of the system

� Makes it easier to �gure out which proposals should be the winning pro-
posals.

Leader Election

1. All acceptor nodes exchange heartbeat messages wit leader

2. If any node doesn't receive heartbeat message, assume leader is dead (Et tu
Brute!) → Start a new leader election phase

3. Servers applying to be candidates send messages with current term and index
of most recent event in log

4. Message sent to all nodes, all nodes vote on who is the leader

Election satis�es the Election Safety property i.e. there can be at most one leader
in any term. This is achieved by following these rules:

� Rule 1: Leader is elected by majority vote

� New leader chosen implies start of new term

� Rule 2: Prevent outdated leaders from being elected

� Servers only vote for a candidate that has a newer log (higher term number
or same term number and longer log)

� Losing candidates know they are outdated, but can also update their logs
now

� Rule 3: If there is a tie,

� If no candidate gets majority vote or there is a network partition

� After a random delay, restart new election (random delay means not all
leader candidates restart election simultaneously, so someone is likely to
win)

Log Replication

0. Each node maintains a log of entries: Entry contains the operation performed
and term number

1. Leader accepts requests for updates from clients → appends them to its log →
pushes them to the logs of folowers

� Leader node in an example is the one with the longest log (since that's

Suchithra Ravi 49

Su
ch
i

CHAPTER 6: Consensus Protocols

how election works)

� Followers may be up-to-date or might have fallen behind (if a node failed
and restarted or lost network connection for sometime)

� Can detect if a node is lagging behind when the node wakes up again (since
the logs are numbered) → get log entries from leaders → replicate them

2. Leader pushes new log entry (+previous log entry) to folloers during heartbeat

3. Followers check if they have the previous log (implies they are up-to-speed),
and send ack if they do

4. If leader receives majority quorum of acks, it can commit the log entry (and
ack to client, if needed)

� The operations are exchanged during heartbeat, so outdated followers can
catch up

6.5.2 RAFT Correctness

Correctness : RAFT guarantees correctness (during log replication) through the
following properties:

� Leader Append-Only: Log at the leader is append-only

� Log Matching: Since there is an append-only log at the leader, logs at any 2
nodes can be compared

I If logs have the same index and term number, the current entry and all
previous entries in the 2 logs are the same

� Logs being ordered helps to choose next value for the consensus protocol.

� Dealing with inconsistency: It is possible for a leader to die with some un-
committed portions in its log. But this is ok because:

� New leader forces all followers to use its log (Election strategy ensures new
leader knows all about the committed logs)

* Commit strategy ensures that majority of acceptors would have ac-
cepted the logs before it was committed.

* New leader election guarantees that it is the one among them which
knows the most committed logs!

� Any uncommitted logs that the new leader is unaware of may be discarded
(clients will try again!)

� If new leader has uncommitted logs from older terms, it can push those
to the followers! (If a client waits for a long time, the request may get
committed!)

Suchithra Ravi 50

Su
ch
i

DISTIBUTED COMPUTING

Safety : RAFT guarantees safety through the following properties :

� Leader Completeness: Once committed, log entry won't be overwritten.

� State Machine Safety: Once a log entry is applied in a node, no other node
will apply a di�erent log entry in the same slot.

In sum, RAFT guarantees nodes will choose a single value and the value will be
agreed upon by all nodes through these properties:

1. Election Safety

2. Leader Append-Only

3. Log Matching

4. Leader Completeness

5. State Machine Safety

6.5.3 RAFT in Practice

Dealing with implementation di�culties :

� Problem: Long log

� Logs may become very long simply due to duration of execution

� Node may have fallen much behind everybody else (like I am in this class.

Jk. Jk.) → Might end up having a long log to catch up

� Solution: Garbage Collection = Snapshot + Log Truncation

� Periodically take snapshots (then we can discard older log entries)

� When a node needs to recover, leader can send the snapshot directly during
heartbeat instead of the entire log

I May have to send a lot of data, but allows node to restart quicker

Like Paxos, RAFT is implemented in multiple real world systems.

Suchithra Ravi 51

Su
ch
i

Replication

7.1 What is Replication

7.1.1 Goals

Main goal is - Multiple systems providing the same service. To do this : Maintain
same state at more than one location. - state can be �les, chunks of �les (�le systems),
databases (database server), application-level or OS-level state.

Advantages of replication:

� Fault Tolerance: If one node fails , the replica can provide the service instead.

� Availability/Disaster management- Can continue service during natural disas-
ters by storing data in faraway server.

� Scalability: As load increases, one server might become bottleneck. Replica can
help balance load.

7.1.2 Replication Models

Two main replication models:

� Active Replication: Each node is active and can accept requests.

I For writes, must ensure the other nodes also completed operation

� Stand-by Replication/Primary-Backup: Only one replica is active at a
time and accepts requests

I Other replicas kept consistent so they can takeover when the active one
fails

7.1.3 Replication Techniques

Two main techniques used to implement replication - choose either depending on the
speci�c application scenario:

52

Su
ch
i

DISTIBUTED COMPUTING

� State Replication: Execute operations on one replica, then communicate state
updates i.e. data) to the others.

� Advantage: No need to execute multiple times

� Disadvantage:

* State might be very large to copy over

* Might be hard to �gure out which parts of the state got updated by
the operation.

� Replicated State Machine: Execute each operation on all replicas i.e. com-
municate operations/log to the others.

I Works when the operation is deterministic i.e. both executions produce
the same result

� Advantage: Operations are much smallr to transmit than data

� Disadvantage: Need to ensure both produce same result and are determin-
istic.

7.1.4 Replication and Consensus

Obviously, in all methods above, need to ensure the replication happened correctly
i.e. whatever is communicated (data or log) must be present in all replicas and re�ect
the same value => replicas need to reach a consensus on what the �nal value is! Can
use some consensus protocol for this:

� Primary-Backup: Primary can be the leader

� Active Replication: Each replica can be leader for its own operations

� Not necessary though. Can assign speci�c replica to be the leader always
and simplify design.

Factors a�ecting ordering/consistency of updates :

� Consistency model used

� Granularity of updates: Individual operations updated or transactions?

Cost of consensus : Proportional to number of nodes

� For 1 primary, 1 replica - need minimum 2 rounds of messages for consensus,
say Round Trip time = T

� More replicas, O(N) slowdown. Need RTT >2T because:

� Primary needs to wait for more responses

Suchithra Ravi 53

Su
ch
i

CHAPTER 7: Replication

� Each replica needs to send/receive more messages

� More nodes are now executing the operation

This means performance doesn't scale as well.

7.1.5 How to choose replication method

� Workload: Read-intensive or write-intensive? Distribution of reads and writes
over time? Are they issued to change shared state or isolated in di�erent parts
of the system state.

� System Con�guration: Number of nodes, Network properties, failure rates,
etc.

� Consistency Requirements

7.2 Chain Replication

Definition 7.1: Chain Replication

Consider a scenario with 3 replicas: R1, R2, R3. In each "chain", the �rst
replica (say, R1) is called head and last replica (say, R3) is called tail.

� Write Requests always sent to the head replica

� Head replica replicates write requests only to the next replica in the
chain.

� Each replica propagates the write request to next replica in the chain.

� Tail acknowledges write by sending Ack to the head replica.

� Read requests always sent to the tail replica

Why is this a good idea:

� Still perform the same number of writes, but R1 only handles one set of repli-
cation requests, so no longer as much of a bottleneck.

� Read requests served by tail, so guaranteed to see latest committed data

� If read served by intermediate node, might see a write result which is not
yet completed on a later replica in the chain or tail node. If any of these
fail, the write will be discarded as incomplete, but now a client saw that
data!

Suchithra Ravi 54

Su
ch
i

DISTIBUTED COMPUTING

7.2.1 Pros and Cons

Pros:

� Leader Scalability: Adding replicas doesn't a�ect number of messages seen
by leader.

� Higher Write Throughput: Fewer messages processed.

� Can use pipelining- write can be processed by one replica while it is being
sent to the next.

� Strong Consistency possible: Reads are guaranteed to return only success-
fully committed writes

Cons:

� Cannot use for read-intensive workloads

� Ine�cient: Obviously intermiediate nodes underutilized

7.3 CRAQ

Definition 7.2: CRAQ

Chain Replication with Apportioned Queries or CRAQ tries to im-
prove chain replication to be used for read-heavy workloads:

� Chain Replication: Similar replication pattern, with writes still
handled by head replica

� Apportioned: Reads divided among the di�erent replicas

� Queries: Refers to reads

How can this method maintain correctness?

� When no write in progress, has single copy of data - any node can respond to
read requests

� When a write is completed at a replica: Maintain both old and new data at
each replica.

� Can respond with old value when 2 values present: Until write is Ack'ed
assume that write is incomplete.

� Can check with the tail: if tail responds with new value, then write is
considered committed.

Suchithra Ravi 55

Su
ch
i

CHAPTER 7: Replication

� Once write is acknowledged, discard old value and consider new value as com-
mitted.

7.3.1 CRAQ Performance comparison with Chain Replication

Experimental Setup :

� Compare read throughput since CRAQ was developed to improve that over
chain replication

� Use either 3 or 7 replicas for CRAQ

� Issues 0 to 100 writes/s at head

� Obviously, reads are sent to tail in chain replication, and distributed in CRAQ

� Plot reads/s against writes/s

Results : CRAQ consistently delivers better read throughput

� With 3 replicas:

� Upto 3x read throughput at low write loads

� About 2x read throughputs even at high write loads

� With 7 replicas:

� Upto 7x read throughput at low write loads

� Approx >5x read throughputs even at high write loads

� As write throughput increases, CRAQ replicas have to maintain 2 copies, check
with tail etc., which is why read throughput drops as writes increases

Suchithra Ravi 56

Su
ch
i

Fault Tolerance

And oftentimes excusing of a fault
Doth make the fault the worse by the excuse

� William Shakespeare, King John

8.1 Basics of Failures

From fault to Failure :

1. A failure �rst starts with a fault.

I Fault can be in hardware or software.

I System may function correctly even with fault until the fault is activated.

2. Activated fault leads to an error

3. Error propagates through the system as it executes and leads to a failure

Types of faults :

� Transient: Manifest once then disappear

� Intermittent: Manifest occassionally

� Permanent: Once activated, the fault persists until it is removed

Types of failures :

� Fail-Stop: One or more components stop working

� Omission: Some actions are missing i.e. Components fail to send or receive
some messages

57

Su
ch
i

CHAPTER 8: Fault Tolerance

� Timing: A�ected system components may not meet timing requirements (i.e.
this might cause delays).

I Can lead to failures if system relies on retry or recon�guration on timeout.

� Byzantine: Arbitrary failures i.e. system continues to function but produces
incorrect results

I Can be because of malicious nodes or some software bugs, etc.

8.1.1 How to deal with failures

:

� Avoidance: Idealy, avoid all failures by detecting early (before failure happens)
and taking corretcive action.

I Problem: Tends to be too expensive

I Also prediction may be hard - so this is impractical

� Detection :Detect that a failure has occurred:

I Common method: Heartbeat mechanism (or ping) to check if nodes are
responsive.

� Heartbeat can detect fail-stop but not Byzantine (i.e. if a node is behaving
incorrectly)

I Error Correction Codes: Can be used to detect incorrect execution.

� Removal: Once detected, we would want to remove the root cause of failure
and revert system to the last clean state

I Rollback: Take system to a point before the fault manifested. (If fault is
transient, maybe we won't hit it again)

� Rollback may not be possible if there are some external actions by the
system

� Recovery: System should be able to recover from failure, i.e. detect, remove
root cause, revert to last clean state and resume clean execution.

I A system that can do these is considered fault-tolerant

8.2 Rollback-Recovery

Basic idea : When a fault is detected, rollback to a previous state (where system
was known to be correct), then re-execute with fault removed. Rollback includes:

� Rolling back e�ect of any messages transmitted after fault was detected

Suchithra Ravi 58

Su
ch
i

DISTIBUTED COMPUTING

� Rollback any updates made to system state

How to implement this :

� What state to roll back to?

� From Consistent Cuts, we know system has to roll back to a "consistent"
state (from a time before the fault occurred.)

I System need not roll back to an actual state that ever happened (consistent
state doesn't mean it was a real state, just a state that is consistent with
the operations in the system)

� How far back should we take the consistent cut from? (There may be many
consistent cut points before the current point, which one to choose?)

� Try to �nd by progressively rolling back changes in the system to �nd
consistent cuts

I This can potentially rollback to the beginning and all data can be lost!!

� Instead choose one of the 2 methods: (See section below)

* Checkpointing

* Logging

Granularity of operation may vary:

� Transparent/Full-System: Do not require any application level modi�cation
i.e. transparent to the application

� Rollback-Recovery system needs to track every individual message send/re-
ceive (and their ordering), every state update (and its success/ordering).

� Obviously, large overhead.

� Transaction-level: Application modi�ed to use transactional APIs (system
will ensure transactions are executed atomically).

� Executing distributed transactions atomically is a whole other problem
(see Chapter 9)

� Application-speci�c: System-level might track too many things. Application
has better insight into when/what needs to be saved/checkpointed.

� Example, in HPC domain, massive number of operations/state updates.

� Only useful when the performance degradation caused by saving too much
state is a real concern. Typically, this might be overkill.

The future sections discuss transparent systems, but the discussion can be generalized
to transactions or even application-initiated checkpoints.

Suchithra Ravi 59

Su
ch
i

CHAPTER 8: Fault Tolerance

Definition 8.1: Checkpointing

Checkpointing is the process of saving the application state periodically so
that the system can revert to the checkpoint on failure.

� During normal operation: Periodically ave state of application/node
-> Flush checkpoint to disk or persistent storage

� On failure: do any repair activities -> restore checkpoint from persis-
tent storage -> restart system

� On hardware failure- might repair/replace parts (or) simply start
a di�erent node to replace failed node.

� Advantage: Can restart instantaneously after restore.

� Disadvantage: At each checkpoint, lot of I/O to save full system state. (this is
where application speci�c)

� Can reduce with application-speci�c checkpoint to save only necessary data

� Can track delta changes since the last checkpoint and only save those

Definition 8.2: Logging

Logging is the capturing of information about operations performed so that
the operations can be repeated to redeem the latest state on failure.

� Basic idea is to log information about operations performed i.e. change
in di�erent state variables

� 2 styles possible:

� UNDO: Store original value of changed variables - can use if
we want to "undo" operations one by one

� REDO: Store new value of changed variables - systems is "rolled
back" to original application state, then "redo" operations.

� Obviously, log has to be written into persistent storage

� Advantages:

� Not storing whole system state, so lesser I/O to persistent storage (not
much storage required)

� I/O time happens while application executing, so good to have lesser I/O

� Disadvantages:

Suchithra Ravi 60

Su
ch
i

DISTIBUTED COMPUTING

� Recovery takes much longer

� With REDO log, even regular application operations expensive - need to
look through log to �nd most recent value of dependent parameters

Combining logging and checkpointing

� System can periodically perform checkpoint

� Between checkpoints, use logging to save updates (earlier logs can be discarded).

� Message send/receive also considered updates here.

� Advantages:

� Limit duration of recovery i.e. System doesn't have to go back to begin-
ning, just needs to return to most recent checkpoint with consistent cut.

� Limit space and bandwidth usage

� Disadvantage: Need to detect a checkpoint that is a stable consistent cut.

8.3 Checkpointing

System model for the next few sections:

� Fixed number of processors that may interact with outside world

� Processors communicate among each other only via messages

� Network is non-paritionable, but other assumptions vary (FIFO or not? Reliable
communication or not? Remember we can achieve these using TCP)

� Number of tolerated failures may vary depending on the protocol

8.3.1 Uncoordinated Checkpointing

� Processes take checkpoints independently (See �gure)

� On failure, the recovery line needs to be computed and process reverts to it.

� If the failing process rolls back to a particular checkpoint, others have to
roll back to consistent checkpoints

* E.g. if P3 rolls back to a time before was m3 sent from P2, P2 should
roll back to a point before the send message m3 event. This process
is continued till all processes are consistent.

� To achieve this, need to store dependency information (or track which
messages were sent, so we can decide if we found a valid recovery line or
not)

Suchithra Ravi 61

Su
ch
i

CHAPTER 8: Fault Tolerance

� Disadvantages:

� Domino E�ect: Since the checkpoints are uncoordinated, when we roll
back to a point for P3, it may force us to go to an earlier point for P2,
which itself might force us to move to an earlier point for P1, etc. i.e. we
might rollback a lot more than we need and maybe even to the beginning!

� Useless checkpoints: (like in the example above where many had to be
discarded) Many checkpoints are useless as they can never be part of a
globally consistent state

� Multiple checkpoints per process: Since we need to keep rolling back
till we �nd a consistent state, need to store multiple checkpoints for each
process

I Particularly bad since many of these checkpoints might also be useless
- so extra storage AND wasteful storage.

� Garbage Collection: To clean up these extra (and maybe useless) check-
points, need to run gc - but this may be complex and time-consuming.

8.3.2 Coordinated Checkpointing

� Processes co-ordinate when they take the checkpoint so that the checkpoint
results in a consistent state

� Advantages:

� No longer need a dependency graph to calculate the recovery line: most
recent checkpoint is valid!

� No domino e�ect: All checkpoints taken are relevant checkpoints!

� This means, need only one checkpoint per process

� No garbage collection needed

� Disadvantages: The co-ordination itself

� Delay in initiator message E.g. If the initiator message is received in
P3 after message m3 arrived, but in P2 before message m3 was sent?

I Synchronous system: Can simply take checkpoints every T units of
time.

I If message delivery is reliable and bounded: can come up with a round-
robin sort-of scheme

� Unnecessary checkpoints: Nodes may be forced to take checkpoints
even though no changes since the previous checkpoint on that node!

Suchithra Ravi 62

Su
ch
i

DISTIBUTED COMPUTING

8.3.3 Communication-Induced Checkpoints

Use a consensus protocol to decide whether to take the checkpoint now or not.

Di�erent approaches possible:

� Blocking approach: Nodes do not process any other message while this is going
on

� Initiator starts a 2PC or other protocol to start the consensus process

� Non-blocking approach: Global snapshot Algorithm

� Relies on special marker messages, needs the network to be FIFO

� To avoid FIFO, piggyback marker message on a regular message

� To capture state of nodes not communicating with anyone else, periodic
independent checkpoints are taken

� If node receives message with marker, �rst take snapshot, then process
actual message. (All nodes will snapshot before this message was sent/re-
ceived).

8.4 Logging

Logging saves storage but needs more complex recovery (i.e. saves i/o, needs more
compute!) Again, need logs to capture information such that a consistent cut can be
obtained. Should not lead to orphaned events i.e. receive is in the log, but send
isn't.

Di�erent approaches to achieve this:

� Pessimistic Logging: Each process logs everything to storage before events
propagated. (Basically send message is logged before actually sending)

I Obviously high overhead- write to persistent memory is slow- plus this is
in critical path. Can improve slightly by using faster persistent memories.

� Optimistic Logging: Assume that the log will be always persistent before the
failure + allow e�ects to be reversed

I This assumption is hard to meet- need to track dependencies

I Have to identify incomplete operations and remove their e�ects during
recovery

I Any operations that have external e�ects (e.g. robot movement), the op-
eration has to be delayed until system can capture the information (and
ensure this operation will not have to be reversed later.)

Suchithra Ravi 63

Su
ch
i

CHAPTER 8: Fault Tolerance

� Causality Tracking: This is what we really need

I Operate optimistically when there are no dependencies

I Capture dependencies so that causally related events are deterministically
recorded

I No risk of delaying external events inde�nitely (causality tracking itself
depends on some message exchange- once the causality messages are all
delivered, safe to execute)

8.5 Which Method to Use?

Right choice depends on multiple factors:

� Workload type: How often data updated, size of updates, are most updates
shared data, is fast recovery important etc.

� Failure types: Types of possible failures and how they can be recovered

� System con�guration: Cost/overhead of communication vs storage, system
scale, etc. (These may change over time)

Changes from when the paper was written (see table from paper):

� Pessimistic logging considered ine�cient because writes to persistent memory
are slow, but this is becoming faster with time

� Coordinated checkpointing (default for HPC)- favorable for most features, but
delays operations - requires system-wide coordination. This might become too
much overhead depending on the application (or network costs in the future)

Suchithra Ravi 64

Su
ch
i

Distributed Transactions

Those Are Not Transactions (Cassandra 2.0)
- Dave Scherer, Blog

� Martin Kleppmann, Blog, Designing Data-Intensive Applications

9.1 Transactions and Distributed Transactions

A transaction is a group of operations that need to be applied together in an indi-
visible manner. Transactions are usually expected to be done with ACID properties
i.e. Atomicity, Consistency, Isolation and Durability.

� Atomicity: Either all the operations in the transaction are applied or none of
them.

� Cannot execute one transaction with inputs that are results of a partially
applied, di�erent, transaction.

� Consistency: Described di�erently in di�erent contexts. Typically, later trans-
actions should see the e�ects of other transactions committed in the past.

� Isolation: Concurrent transactions leave the database in a state as if they
could be obtained if those transactions were executed in some order (Similar to
serializability)

� Durability: Once a transaction is committed, it stays committed even after
system failure. (Should write to persistent storage)

Example: Consider a transaction Tx de�ned by 2 operations A and B that update
variables a and b. Assume 2 clients executing this transaction as C1 and C2 on the
database.

I It is ok to have both C1 and C2 completed or neither.

I It is not ok to have situations where C1 completed A but not B. C2 cannot see

65

http://web.archive.org/web/20150526065247/http://blog.foundationdb.com/those-are-not-transactions-cassandra-2-0

Su
ch
i

CHAPTER 9: Distributed Transactions

a value of a from C1 that was the result of A, without seeing the updated value
of b (i.e. result of operation B).

Thus, only 2 possible outputs for a transaction: either it is committed (permanently
visible) or aborted (all intermediate updates are lost).

Transactions are useful for:

� Concurrency control: If they complete atomically in isolation, then we can
come up with a proposed ordering among the di�erent transactions to get a
consistent output.

� Fault Tolerance: We may not want to save partial states from the transactions
(e.g. debit shows in one bank account but the corresponding credit doesn't show
up for the bank transfer!)

Definition 9.1: Distributed Transaction

Distributed transaction is similar to a regular transaction but executed
across multiple nodes. Still need to guarantee ACID, but now across multi-
ple nodes.

Common solution: Assign a leader/initiator that initiates transactions, ex-
ecutes consensus protocols across a) multiple participants of a single dis-
tributed transaction b) across multiple transactions.

9.2 Google Spanner

Google, Facebook etc. deal with millions of user requests by building an underlying
data management layer which is geographically distrbiuted across the world. Spanne
is:

� Global Data management layer used by Google for Ads, Play, etc.

� Also available as a Cloud DB service.

� Allows applications to interact with data through SQL queries (but unlike
MySQl, o�ers much higher scalability.)

How does it work:

� Data Stored globally at geographically separated zones (say US, Brazil, Russia,
etc.)

� At each location, the database is sharded (partitioned) across 1000s of servers.

� At each location, data is also replicated across multiple sites (say datacenters
in di�erent cities in the US) to provide fault tolerance and availability

Suchithra Ravi 66

Su
ch
i

DISTIBUTED COMPUTING

9.2.1 Spanner Stack

Spanner is made of a stak of multiple components:

1. Bottom Layer: Persistent Storage - Distributed File System (like GFS, Colossus,
etc.)

I Ensures data is written to persistent storage, replicated, written out to
disk, etc.

� Data organized as �les (extension of GFS)

� GFS: Optimized to serve reads and appends (deletes are rare)

2. Next Layer: Data Model/Tablet- Exposes underlying �les to applications in a
speci�c data model

I Applications don't have to explicitly think about searching through �les -
presented data as a unit

� Used a version of key-value store BigTable

� BigTable tablets modi�ed to modify logical grouping of data:

� Timestamps (similar to version number) to help with transaction or-
dering

� Support operations that modify not just single key or range of keys
but more like SQL queries on di�erent types of related data.

� Resultant layer called MegaStore that exports a view of the data store
similar to a relational database

� Each tablet unit has related database entries grouped based on a set
of keys

� Tablets replicated using Replicated State Machine kept consistent us-
ing Paxos

� Locks and 2-phase locking (similar to 2-Phase Commit): to manage
concurrency for transactions across replicas

I Lock co-ordinator additionally checks if all participants can grant
the lock

� For transactions across replica sets, use distributed transactions with 2-
Phase Commit

9.2.2 Consistency Requirements for read operations

� To get a truly consistent view, will have to block all incoming writes and read
data → Obviously expensive

� Instead, take a snapshot of data at a su�ciently recent moment, then use the

Suchithra Ravi 67

Su
ch
i

CHAPTER 9: Distributed Transactions

data to create the view (like Newsfeed/Timeline)

� Problem: Even distributed snapshot spans multiple replicas, datacenters, and
geographic locations! → Also expensive, maybe more than even locking.

� "Approximate" Consistency may be insu�cient: 2 seemingly unrelated opera-
tions might in fact be related in real life (think of the unfriending your boss and
posting about your job search example!)

I Goal 1: External Consistency: Operations appear to be consistent to th eout-
side world (or) order of events in real world = order in which events appeared
on global clock

I Goal 2: Strict Serializability If transaction1 is assumed to be completed by the
outside world before transaction2 started, transaction2 MUST see the results
of transaction1.

9.3 True Time

Definition 9.2: True Time

True Time is not real time, but an uncertainty interval around real time.
Allows di�erent operations:

� TT.now(): Returns a time interval [start time, end time] - values of
what earliest and latest time it could be at the given moment

� TT.after(t): Returns True if time t has de�nitely passed

� TT.before(t): Returns True if time t has de�nitely not arrived yet

Essentially provides a way to reason about as well as limit the uncertianty
(ε) in measuring time. The time is represented as a window t± ε i.e. when
we read time t, it can actually be [t− ε, t+ ε]

How to measure this uncertainty :

� By periodic probing of a master clock in datacenters

� Use both GPS and atomic clock

� Compute 2.ε based on the probing period and probe latency

� This ε essentially gives how "o�" the local time can be from global time.

How to use True Time to order transactions Goal: Assign timestamps to
transactions such that we can be sure of their order of execution

Suchithra Ravi 68

Su
ch
i

DISTIBUTED COMPUTING

1. Acquire locks required for transaction

2. Pick a timestamp for the transaction (this is where we need True Time and
can't simply read o� the clock)

I Get current reading of clock s' = TT_now().latest

� Instead of taking time t, the "latest" above gives t+ ε, i.e. the latest time
it can be now if we account for clock uncertainty

� Since we pick the "latest" value of current time, any transaction before
this would have picked an earlier value, and is guaranteed to be ordered
correctly

3. Pick a timestamp to release locks

I Wait until TT_now().earliest >s

� Instead of taking time t, the "earliest" above gives t − ε, i.e. the earliest
time it can be now if we account for clock uncertainty

� Essentially waiting for this window to start everywhere i.e. if the "earliest"
time now is itself greater than the s we pick, the actual time everywhere
in the system is guaranteed to be greater.

4. Actually release the locks

Essentially even if it is a tiny operation, we wait for the window 2.ε to commit it, so
that we can be sure that

I All operations in the system before time s were completed

I Any operation after the current one will have timestamp > s

9.3.1 Ordering Write Transactions

Note that in the sequence above we are using pessimistic locking: we obtain all
locks before we start transaction → prevents con�icts.

Alternative is to use: optimistic locking or Optimistic Concurrency Con-
trol(OCC): let the transaction execute and acquie lock only when necessary (Can
improve throughput) → Leads to lots of con�icts, especially with long transactions.
Here since write needs to be replicated as well, transactions include network delay of
communicating to replicas so is a long transaction.

Goal: Ensure write completes in all replicas, replicas have a consensus on �nal value,
and transaction gets timestamped with unique value.

How participants ensure transaction completed across all their replicas :

1. Acquire locks

Suchithra Ravi 69

Su
ch
i

CHAPTER 9: Distributed Transactions

2. Pick s (See previous section)

3. Start consensus algorithm

4. Achieve consensus

5. Wait until time is greater than uncertainty window (See above)

6. Then actually commit transaction i.e. release locks

7. Leader releases locks then noti�es other replicas.

For transactions that span multiple replica sets :

� 2-Phase Commit to ensure all participants in the transaction complete it before
considering the transaction as committed.

� Each participant itself needs to ensure the transaction is replicated across all
replicas -> See steps above

Thus, the actual steps are:

1. Co-ordinator starts transaction i.e. acquires locks + noti�es participants

2. Participants acquire locks and compute their individual s value

3. Each participant logs their operations (this is part of the 2-Phase Commit Pro-
tocol)

4. Once logging and operation completed (Prepare Phase complete!), notify co-
ordinator that operation done and send s value

5. Compute overall s value (largest value of s so that when commit happens ev-
eryone is sure to have passed that time)

6. Wait out the time required (until TT.now().earliest > computed s)

7. Co-ordinator completes transaction (i.e. releases locks) → noti�es participants
to release locks as well

Example: Assume ε = 4 here.

� Say we start a transaction (the post deletion) at local time 6 or (6-4, 6+4) =
(2, 10).

� Say we communicate to replica which sees local time = 8. So the time window
here is (4, 12).

� Participant noti�es the co-ordinator, which �nalizes the timestamp as s = 8.

� Once the transaction completes, both nodes wait until the timestamp window
has earliest >8 (say, s = 13, so window is (9, 17)) before actually committing.

Suchithra Ravi 70

Su
ch
i

DISTIBUTED COMPUTING

The next transaction can't start until this time, when its local time is guaranteed to
at least have a value 9. The next transaction might pick an s = 15 when it actually
acquires a lock, ensuring the ordering.

9.3.2 Ordering Read Transactions

Two types of read transactions: 1) Read Now 2) Read recent

For read now transactions : These still need to be externally ordered

� Leader determines safe timestamp (using the same steps above i.e. determine
timestamp t such that the TT.now().earliest > s)

� Leader is the Paxos leader for transactions in same replica set

� Leader is transaction co-ordinator for cross-replica-set transactions

"Safe" timestamp implies a timestamp greater than all current writes in progress =⇒
Ongoing prepared, but not committed writes can delay reads (We want the
read to happen after all ongoing writes are committed, so ongoing writes can delay
reads!)

For read recent transactions : Need some valid recent value, not necessarily
latest

� Simply need some recent valid value

� Without TrueTime would take a consistent cut using a distributed cut algo-
rithm, use that to get value

� Since timestamps are guaranteed to be ordered here, can simply choose snapshot
at a recent timestamp, read from the snapshot! (Ez pz! Thank you, True Time!)

9.3.3 TrueTime alternatives

TrueTime achieved by using GPS + atomic clocks resulting in a few ms of uncertainty
(5-7 ms) =⇒ a transaction can be delayed by this value (few ms) to ensure ordering.

� NTP Protocol: 100ms delay. Obviously, impractical.

� Can be useful if we ignore external consistency for some transactions i.e.
Choose to use NTP only when external consistency is necessary (and ignore
for others)

� CockroachDB: Exposes a linearizability �ag in transactions to applications

I Applications explicitly choose which transactions need external consistency

Suchithra Ravi 71

Su
ch
i

CHAPTER 9: Distributed Transactions

Note that if only some transactions are strictly ordered, we end up with multiple
concurrent transactions in the system. For these transactions to be serializable:

� Optimistic Concurrency Control

� Snapshot Isolation or Multi-version Concurrency Control: To provide
Atomicity and Isolation

� Sequence of snapshots is serializable

* To keep transactions serializable - drawing a directed line among snap-
shots produced should result in a graph with a cycle. If there a cycle
might be formed, abort that transaction and restart it.

� Transactions read from snapshot version of the distributed state

TrueTime achieves linearizability, but these methods achieve serializabil-
ity.

9.4 AWS Aurora

Di�erent solution to the same problem - used by AWS.

� Primary-Replica Architecture: Single primary node that processes Read-
Writes, Replicas perform Read-Only

� Design for Availability: Guarantees service even if an entire zone is lost

� Servers in many zones - each zone independently managed (and maybe
geo-distributed)

� Data replicated to 3 zones, in each zone replicated to 2 nodes.

� Uses voting quorum to provide read/write consistency (i.e. majority of
zones agree on a value)

I Need enough replicas outside a zone to reach a quorum

I/O Ampli�cation - Since 6 replicas lots of I/O for each transaction

� Mirrored MySQL: With traditional architecture, for each transaction, pri-
mary sends log (operations performed)+ data + metadata.

� Aurora: Avoid this by using only log replication i.e. Send only log(operations)
+ some metadata

I Why does this work? The underlying storage layer (unlike MySQL database)
is also a distributed �le store

� This layer guarantees e�cient access/storage of distributed data between
primary and replicas

Suchithra Ravi 72

Su
ch
i

DISTIBUTED COMPUTING

� Sending log (operations) alone is su�cient for the replica to get the correct
data and perform consistent read operations

Note: This method might sometimes result in reads of stale write data unless some
additional locking is used.

Suchithra Ravi 73

Su
ch
i

Consistency in Distributed Data Stores

We have previously discussed consistency; we now continue our discussion, but speci�c
to the context of distributed data stores (represented as key-value stores).

Why is Consistency important Unlike in Spanner, most systems cannot assume
the availability of something like TrueTime, but still need to o�er consistency guar-
antees.

In the absence of speci�c actions, it is easy to break consistency in distributed systems.
Example:

1. Bob �rst says "Sally is sick" at time t0 and "Sally is well" at time t1.

2. Alice sees both updates and says "Great news!" at time t2.

3. Carol only sees Bob's �rst update and then Alice's update, so she is confused!

→ Obviously, this won't happen if the message boards were a single centralized
database, but this is quite likely in a distributed system if Bob's second message
is delayed or lost.

Why is consistency hard

� Replicated state: Usually same data present in multiple replicas, so we should
it is possible for some replicas to have stale data. Need to ensure this data is
not used.

� Caching: Most DS use cashing to improve performance, but the cache is now
another copy of the data that can go stale and must be updated correctly.

� Distributed State: Need to propagate writes to distributed state in the correct
order and o�er ordering guarantees.

� Failures: Further complicated by the occurrence of failures (should not lose
data if a node fails, or have stale data in one node, etc.)

74

Su
ch
i

DISTIBUTED COMPUTING

10.1 Consistency Models

Guaranteeing consistency obviously comes with a cost to availability and performance.
(Remember CAP Theorem)

To deal with this, we de�ne consistency models. A consistency model is a contract
between the system and the user. Here, the system makes a guarantee about the
ordering of the updates, and how these will become visible to ongoing read operations.

Some examples of consistency models include:

� Strong Consistency guarantees that the real order of execution of events will
be visible to all.

� Linearizability is a related concept where the transactions may appear to
be in linear order, even if individual operations are not.

� Sequential Consistency guarantees that all the events will be visible to all
participants in the system, in the same order, but this order need not corre-
spond to the real order of ocurrence of those events.

� guarantees that the transactions appear in the same order to all partici-
pants in the system, but this order need not correspond to the real order
of occurrence of the transactions.

� Causal Consistency is a model that guarantees that the ordering will be
enforced only for events that are related to each other by the happens before
relationship. There are no guarantees of ordering for concurrent events.

� If event A happens before event B, all participants in the system will see A
before B. But if there is no clear relationship between A and B, i.e. they
are concurrent, then participants may see them in any order.

� Eventual Consistency is a model commonly used in practice where if the
faults or failures are not permanent, the model guarantees that all writes will
become eventually visible. Note that this means it is possible to have periods
where the view of the data store is not up to date or consistent.

→ In general, consistency models can be placed on a spectrum where models trade-o�
weaker consistency for greater availability.
Some e�orts to quantify this trade-o� use the number of delayed updates at a node
and the number of out of order updates that may be visible in the system (but aren't
yet committed).

Definition 10.1: Key-Value Stores

Key-value stores are data stores, where each piece of data is uniquely

Suchithra Ravi 75

Su
ch
i

CHAPTER 10: Consistency in Distributed Data Stores

identi�ed by some key, and the value associated with that key can be some
arbitrary data blob of some size. E.g. A simple hashmap.

Basic operations on a key value store are:

� Put: Writes a value for the associated key

� Get: Reads or returns the value associated with a key from the data
store

Other operations that may be supported are:

� Scan or Range Query: Returns all values with keys in a given
range

� Transactions: Operations involving multiple keys E.g. Multi-Get,
Multi-Put etc.

It may also store more information such as timestamps, relationships be-
tween elements etc. which allows it to support even more complex opera-
tions.

10.2 Look-Aside Cache

Definition 10.2: Look-Aside Cache

Look-aside cache is a cache that does not sit on the front of the data
store, but on the side. This means that, the client application that accesses
the cache will also explicitly access the database when needed, instead of
the cache itself routing requests to the next layer of the memory hierarchy.

10.2.1 Look-Aside Cache Read Operation

1. Client sends request to the cache

2. If the cache has the data, it returns the data (Cache hit).

3. If the data is not present (cache miss), then the miss is returned to the client.

4. Client performs explicit database lookup.

I The database lookup may be a more complex operation than the cache
lookup since the database interface may be more complex than the simple
"get" query.

5. Once the database responds with the query result, client performs explicit set

Suchithra Ravi 76

Su
ch
i

DISTIBUTED COMPUTING

operation to add the data to the cache.

Obviously, this is still a demand-�lled cache. Note that, in the original paper, the
database store used was a SQL DB stored on hard disks.

10.2.2 Look-Aside Cache Update Operation

There are di�erent design options for how to perform the update, e.g. client could
mark data invalid in cache, or updated the new value. But then if client crashes or
is delayed or corrupted, it may lead to inconsistent state.

Actual solution: Delete the cached entry from memcached and update the database.

� Good because deletes are idempotent w.r.t correctness . Worst case sce-
nario with unnecessary deletes is an ine�ective cache, but not an incorrect
one!

� Deleted entries can be reused for new inserts.

� Cache also has LRU mechanism to discard least recently used updates to make
space for new ones.

I Since database updates are performed before the delete, no actions to be done
after delete is completed.

10.3 Memcached

Memcached is a simple and popular key-value store o�cially designed and released
by Facebook and it was presented at the NSDI conference in 2013. An open source
version is also available.

The paper describes:

� How Memcache is used across

� varied deployment contexts:

* Within a cluster (col-located ina single datacenter)

* Across multiple clusters (still in the same datacenter)

* Across geo-distributed datacenters.

� to serve di�erent clients:

* External clients or users

* Di�erent facebook applications that perform operations on the data.

� with data from di�erent types of databases in the storage tier: (Memcached
serves as an in-memory cache for the objects retrieved from storage)

Suchithra Ravi 77

Su
ch
i

CHAPTER 10: Consistency in Distributed Data Stores

* MySQL database

* Cluster of databases across which the data is sharded

� Di�erent mechanisms used to provide consistency across these varied use cases
and the trade-o� that apply.

Why was a cache needed

� Nature of Workload:

� Read-heavy

� Reads not uniformly distributed: Some items accessed more frequently
than others called hotter items.

� Hot items follow spatial and temporal locality.

� Data needs to be persisted into persistent storage, but persistent memory ac-
cesses are slower

I A smaller in-memory cache with hot/recent items stored in it can improve access
speed.

� Note that not all items can be stored in this cache, only a subset is stored.

Thus, Memcached is a simple in-memory object store, and the cache components of
its architecture are called Memcache.

10.3.1 Features of Memcache

I Memcache only consists of clean, read-only data!

� Memcache is a non-authoritative cache i.e. the database (not Memcache) is
the �nal authority on the correct value.

� These operations are exposed to the client, so if client needs stricter guarantees,
client can perform these operations themselves.

I Note that typically the cache has to provide the same semantics as the
database to the client since the client can access either. But here, be-
cause the client explicitly accesses the caching tier, the 2 interfaces can be
completely di�erent.

It is possible to make Memcache persistent by backing it up with persistent non-
volatile memory.

10.3.2 Mechanisms in Memcached

A potential consistency problem in memcache :

Suchithra Ravi 78

Su
ch
i

DISTIBUTED COMPUTING

1. Say there is a key k0 whose initial value is A and it is not present initially in
the Memcache.

2. Server0 tries to read this value:

� Database responds with A

� Server0 sends a Set(A) to the memcache to set the value to A.

3. A di�erent process server2 sets the value of the key to B in the data store.

4. Server1 tries to read this value:

� Database responds with B

� Server0 sends a Set(B) to the memcache to set the value to A.

5. Both server updates arrive out-of-order at the memcache (this is possible be-
cause of network delays)

� First the value is set to B in the cache.

� Then the new value is set to A.

→ Obviously, here, the �nal state is incorrect.

To resolve this, memcache uses Leases. A lease is a token issued by the cache to
provide greater control on when/how it serves data on read operations.

� It is issued on a miss.

� It can detect concurrent writes, so can be used to enforce some ordering on the
writes.

� For the thundering herd problem, by controlling how many leases are issued at
a given point of time, memcache can control the number of accesses served, and
thus number of accesses that will proceed to the database.

� Can also be used to avoid serving stale values.

Thundering Herd Problem

The thundering herd problem occurs when a large number of processes
or threads waiting for an event are awoken when that event occurs, but only
one process is able to handle the event. When the processes wake up, they
will each try to handle the event, but only one will win. All processes will
compete for resources, possibly freezing the computer (or server), until the
herd is calmed down again!

Suchithra Ravi 79

Su
ch
i

CHAPTER 10: Consistency in Distributed Data Stores

10.3.3 Scaling Memcache

This is essential because ultimately Memcache has �nite capacity, and we may need
to increase the cache capacity to serve larger loads.

Within a single cluster

This is done by adding more MC instances:

� Data is sharded so that each instance is responsible for a subset of keys.

� Shard boundaries can be adjusted i.e. can con�gure how many keys the
instance is responsible for.

� Routing decisions o�oaded to the client i.e. client decides which instance to
send the request to.

� mcrouter component encapsulates routing functionality and state in the
client.

→ These decisions allow Memcache design to stay simple while still being scalable.

Across multiple clusters

Single cluster memcache instances can have bottlenecks:

� From client perspective: Number of memcache instances it can route across
e�ciently, is limited.

� From a shard perspective: If the shard holds hot content, may be a bottle-
neck on number of requests served.

� Failures: As system grows bigger, some component's gonna fail!

Solution: Use multiple clusters. organize the memcache instances into multiple sep-
arate memcache cluster, where each cluster holds a smaller number of memcached
instances. Here, the same data is held on the corresponding instances on di�erent
clusters.

� Scaling to more requests in general: Since multiple clusters can serve
requests, the total number of requests served is higher.

� Serving hot content: Can handle more requests for hot content because the
same hot content will now be present on multiple instances on di�erent clusters.

� Failure Domains: Since there are multiple clusters, we now have multiple
failure domains. A failure only impacts a single cluster at a time and others
will continue to serve requests.

Equivalent to having multiple MC caches, so now we need to take of consistency
among the di�erent instances!

Suchithra Ravi 80

Su
ch
i

DISTIBUTED COMPUTING

I DB-driven invalidations: DB initiates invalidations whenever the data is
updated in the DB commit order .

� Note that this is necessary for multiple MC cache instances - can no longer avoid
it like in the single MC case where client drove the maintaining of consistency.

� It is possible for the memcache data to be stale, but the updates will not be
reordered.

� Note that the storage tier itself can be a cluster with many nodes.

Geo-distribued clusters

� Data and services are distributed geographically across many sites. =⇒ there
are multiple memcache cluster groups at di�erent locations.

� Problem: Obviously, network latency beteen locations is very large, so a sin-
gle centralized cluster collecting updates from di�erent locations or driving
invalidations is impractical.

� Solution: MC expects data to be replicated across locations by the storage layer.

� Problem: Obviously, now more copies of data that need to be maintained con-
sistently.

� Solution: Memcache speci�es protocol on operations to be done on a write when
there are geo-distributed datacenters.

� Distinguishes between a master database site and replica databases.

Protocol on writes for geo-distributed data centers :

1. Client web server wants to perform an update.

2. Client sets a marker in the local memcache for the corresponding entry

� Marker tells MC that the value is involved in remote operation.

� This helps to ensure proper ordering among concurrent operations.

3. Actual write performed against the remote master database.

4. Local memcache isn't updated yet. Instead its value is deleted.

I Here, the local database may not yet have the new value, so cannot update
the cache yet.

5. Replication logic for geo-distributed database replicates the update to all repli-
cas (including local one).

6. After database is updated, marker is deleted.

Suchithra Ravi 81

Su
ch
i

CHAPTER 10: Consistency in Distributed Data Stores

I Until marker is deleted, reads for this entry only served from remote master
database (not from local cache or db).

� Obviously, goal is to reduce this cross-datacenter tra�c (i.e. try to replicate
as quickly as possible).

10.4 Causal+ Consistency

Why Causal consistency is not enough : Previously, we saw some examples of
when operations that appear unrelated need to be ordered correctly to avoid confusing
end users. E.g. The "Sally is sick" example and and the job search example in Chapter
9. These problems still exist with causal consistency since in this consistency model,
the data accesses for these operations still happen on di�erent servers and appear
concurrent! To address these, Wyatt Lloyd (now at Princeton), introduced the new
model called Causal+ Consistency or COPS.

System described in COPS: Similar to the one in Memcached.

� Key-value based object store on one datacenter, which itself has multiple servers.

� Data sharded across the individual servers in the datacenter.

� data store geographically distributed to other locations as well, so data needs
to be replicated across multiple locations.

How COPS works

1. Client performs get operation to read data (served from the local instance).

2. Unlike Memcached, client library captures information about the read.

3. Say there is a later put operation on this instance.

4. Operation sent to other replicas/clusters along with ordering metadata.

� Actual client library issues a put after operation with all the meta data
about the dependencies for this put operation has with other (apparently
unrelated) values read previously by this client.

� Local key-value store logs this data and communicates this information
during replication.

5. During replication, remote object store only performs update after dependencies
have been met. Update becomes visible only after this.

There are newer consistency models that de�ne consistency in a manner more useful
from the client's perspective, while continuing to o�er high performance and scala-
bility.

Suchithra Ravi 82

Su
ch
i

Peer-to-Peer and Mobility

In this chapter, we discuss some aspects of the messaging layer on top of which
distributed systems are built.

11.1 Communication Support assumed so far

� Point-to-point Messaging: So far, assumed that all messages are sent from
one node to another.

I Even when same message sent to multiple nodes, sent via multiple point-
to-point messages.

� Application-level namespace: Namespace used to specify di�erent nodes at
the application/service level. e.g. primary node, node that stores the shards,
etc.

� Network-level namespace: Namespace used by network protocols to deliver
messages, such as IP addresses or link level addresses.

� Mapping: Need an intermediate metadata service to map the two namespaces

What is this mapping layer

� As described above, provides mapping between application namespace and
network-level namespace

� Can think of this as an overlay network to which the application layer describes
the nodes/endpoints it needs to talk to and the mapping layer maps these
"addresses" to the exact network level addresses

� How can it �nd this mapping? As part of the control plane of the distributed
service, when di�erent processes are created and launched, the network address
is recorded and the information about this mapping is distributed to all nodes.

� The mapping layermust allow for these these mappings to change dynamically.
can also be more easily recon�gured, for instance, if we need to scale it to a
larger number of nodes.

83

Su
ch
i

CHAPTER 11: Peer-to-Peer and Mobility

� Why should we deal with change: In a DS, change is inevitable - there
may be failures or recon�gurations when we scale the system.

� Nodes may fail.

� If we scale the system, we may need to recon�gure.

� If workload changes dynamically, may need to recon�gure as well.

I Need to have a way to send messages to the correct network address despite
these changes.

� Challenges in dealing with changes in mapping: The goal is to ensure
correct address can be determined quickly after a change. But this can be hard:

� Scale: Might not be able to send this new address information to all nodes
quickly in a large system.

� Geo-distribution: Network latency across di�erent domains also makes
transmitting this information di�cult.

I These are particularly hard if system is very dynamic and changes happen
frequently.

� Failures: Should be able to both deal with failures (ensure messages are
no longer sent to the failed node), as well as propagate information despite
the failures.

� Decentralization or Multiple administrative domains: Nodes may
belong to di�erent administrative domains, then we may not always know
where to send the new con�g information to.

11.2 Interconnect Support

The interconnect network consists of the network device hardware (Network inter-
face cards), drivers and protocol stack used by the communication services. So far,
we have not assumed any speci�c properties for the interconnect network. However,
often the network itself may provide additional capabilities. These are usually called
collective operations and are operations involving (typically > 2) devices in the
network. Collective operations manage m x n communication patterns, synchroniza-
tion primitives, etc. The support for these operations needs to be provided by both
the hardware and the software stack, especially to be scalable. E.g. in HPC, sepa-
rate networks are provided by the hardware to support tree-combining algorithm for
barrier operations.

Collective operations typically provided by all networks:

� Broadcast: Sending message from one node to all the nodes

Suchithra Ravi 84

Su
ch
i

DISTIBUTED COMPUTING

� Multicast: Sending message from one node to some of the nodes in the system.

Additional collectives provided by some networks:

� Gather: One node receives messages from all of the nodes in that communica-
tion group and aggregates the data

� All-reduce: One node receives messages from all of the nodes in that commu-
nication group and performs some reduce operation on the received data. Final
result is available in all the nodes.

� Barrier: This is ≡ to binary gather. Here, all nodes must reach the barrier
point before they continue to the next phase of execution.

� Atomic operations like Compare-and-Swap: Requires hardware support

� Timers: Packets may be stamped with timestamps generated by the network
hardware itself. This can denote real time without depending on CPU to gen-
erate those timestamps.

I Especially useful for RDMA

Advanced features provided by some networks:

� Remote Direct memory Access (RDMA): This allows packets to be trans-
mitted from one node to another directly without engaging the CPU.

� Direct Cache injection (DDIO): Directly injecting data into caches of the
nodes. This is useful because we save a memory access, so it is faster.

However, note that we cannot always make assumptions about the capabilities of the
interconnect:

� Usually high-end capabilities only available in a tightly-coupled (single) data-
center system, but not the internet wide-area network at large, where the only
reliable thing is the use of IP protocol (everything else can change!)

� Multiple datacenters may not all have the same kind of infrastructure

� Nodes may belong to di�erent administrative domains.

11.3 Peer to Peer Systems

There are many popular examples of peer-to-peer systems used for sharing music,
videos, etc. (E.g. Bittorrent, Tor, BitCoin, Ethereum, etc.). The characteristics of
these systems are:

� All nodes in the system are peers - and they collaborate with each other to

Suchithra Ravi 85

Su
ch
i

CHAPTER 11: Peer-to-Peer and Mobility

achieve the common goal (as the case may be).

� Only reliable assumption is that they can use IP addresses.

� Cannot make any assumptions about network topology.

Studying peer-to-peer sytsems is useful because these assumptions can be applied to
datacenters within same organization, or the machines in the same datacenter.

11.4 Connectivity in P2P

How do peer nodes in a P2P system �nd each other's addresses:

11.4.1 Approach 1: Centralized entity

� Assume the existence of a centralized registry where everyone can register their
addresses with (the registry knows which data resides where, which process runs
where, etc.)

� Example: Napster: peer to peer service where information about which songs
were available through which peers was maintained centrally

� Advantage: Can compute which peer has to be computed within 1 RTT

� Disadvantages:

� The central entity is a single point of failure

� It can become a performance bottleneck → limits scalability.

� All nodes need to trust that entity

11.4.2 Approach 2: Flood or Gossip based protocols

� No centralized entity

� Each peer broadcasts information about the content it stores (or requests it can
serve, etc.), so eventually everyone can identify the right target.

� Advantage: Makes no assumption about trusted, centralized entity,

� Disadvantage: No upper bound on time taken to �nd the location of the peer

� Example: Gnutella, Bitcoin

11.4.3 Approach 3: Distributed Hash Table

� Allows for a decentralized index where many nodes can provide information
about how the data or service is distributed among peers.

Suchithra Ravi 86

Su
ch
i

DISTIBUTED COMPUTING

� Structure of DHT such that it can make some guarantees on upper bound of
lookups required to �nd the information (art least probabilistically)

� Example: Chord, Pastry, Tapestry, Kademlia (used in Ethereum), Amazon
DynamoDB (uses DHT as a building block) etc.

11.5 Distributed Hash Table (DHT)

A Distributed Hash Table or DHT is a table used to translate the namespace of
input (name of a �le, string, part of a �le, etc.) to a simpler namespace, such as an
integer using a hash function.

Definition 11.1: Hash Functions

Hash functions are functions that take an input (�le, name of a �le, part of
a �le etc.) and produce a unique, condensed form of the original object as
the output.

I Always produces same output from same input.

I Typically reductive: output usually a condensed form of the input

I Inputs mapped to a su�ciently large set of output values.

I Guarantees the output will be su�ciently randomized.

Hash functions are usually referred to as pseudorandom functions.

Example usage in distributed systems: All clients use the same hash function
to produce signature from the input (name of a �le or string etc.) The output
is then used as identi�er for the node (in which the data resides).

Example of how DHT is used: Say we have a system where data is stored on
multiple nodes. We may use a DHT to determine where a particular data item is
stored. So, hash function would take in input as �lename and give a number 0 to n-1
(for number of nodes) as output.

� File name given as input to hash table

� Say hash function produces integer values in a speci�c range (0 to n-1 above)

� All clients can use the same hash function to compute this integer.

� Each integer can be statically mapped to the IP address of one of the nodes in
the system.

I Number ID space much larger than actual number of nodes.

Suchithra Ravi 87

Su
ch
i

CHAPTER 11: Peer-to-Peer and Mobility

� Number to node IP mapping can be changed when needed (Unused keys can
be mapped to new nodes.)

�

Suchithra Ravi 88

Su
ch
i

Distributed Machine Learning

In this chapter, we discuss system support for distributed machine learning, speci�-
cally in the context of geo-distributed systems (as opposed to data center systems).
Most of the discussions will be in the context of training, rather than inference.

The key to the success of ML and AI in recent years is the ability to build robust
models from vast amounts of data, a process which is both data intensive as well as
compute intensive.

� Has led to datacenters being equipped with massive systems as well as compo-
nents speci�c to accelerating ML - GPUs, TPUs, accelerators, etc.

� Much of the data needed come from the edges of the network

� All this data needs to be moved from edges to backend data centers.

� Particularly challenging when data is generated on globally distributed sensors
and environments.

� Often need to move this data to multiple geo-distributed data centers (not just
the local one) → obviously expensive.

12.1 Distributed Machine Learning Approaches

To deal with this, we can have multiple approaches:

1. Centralized Approach:

� How it works:

(a) Collect data from di�erent locations

(b) Move data to single centralized place for analysis

(c) Build model in centralized location.

(d) Distribute models back to global locations

(e) Use model i.e. Perform inference in those locations

� Disadvantage:

89

Su
ch
i

CHAPTER 12: Distributed Machine Learning

� Slow: Tremendous data movement (53x slower than having all the
data locally)

� Data sovereignity: Data movement may be governed by di�erent
laws and may have to be moved across countries.

2. Federated System Approach:

� How this works:

� Here, data is evaluated locally, and some learning happens locally.

� These locally computed models are then aggregated periodically (Pa-
rameters are collected centrally)

� Based on the centrally collected updates, a general update is com-
puted,

� General update is disseminated across all locations.

� Example: Gaia (published in ATC 2017)

� Designed primarily for data centers

� Leverage the approach of parameter servers.

� Similar solutions: federated distributed learning model by Google.

� How parameter servers work:

� System deployed in a data center- in a cluster with many machines-
some designated as workers and others as parameter servers.

� Training data distributed across all workers; model parameters need
to be distributed to all servers

� Learning performed iteratively:

(a) Workers get some set of parameters and compute model updates
or gradients.

(b) Updated parameters communicated to the servers

(c) Servers aggregate this information and synchronize amongst them-
selves.

(d) Server determine �nal model updates for this iteration and com-
municate to workers.

(e) Repeat loop until model converges (di�erence in update to param-
eters beteen 2 iterations below a threshold.)

3. Isolated Learning Approach: isolated Learning is to perform learning
independently at each location using the data from that location.

� Each node builds its own custom model in isolation.

� Model is truly tailor-made.

Suchithra Ravi 90

Su
ch
i

DISTIBUTED COMPUTING

� Problems:

� � There may be insu�cient data at that single location→ learning pro-
cess may not converge

� Even with su�cient data, may be suboptimal since some patterns may
be present at multiple locations - have to relearn the same information

� Particularly wasteful if some trends in data propagate over time from
one location to others.

12.2 Geo-Distributed ML with Gaia

We would now like to extend parameter servers to geo-distributed data sources (mul-
tiple datacenters)

Why naive extension of the approach doesn't work

� Works functionally but causes too much of a slowdown (20 times) compared to
when all data is in the same datacenter.

� Slowdown is due to characteristics of wide-area-network connectivity.

� Authors studied slowdown by on AWS instances in 11 EC2 regions.

� Slowdown most signi�cant when the WAN connectivity performance of the re-
gion is the poorest.

� Even when the WAN connectivity performance is good, there is a 3-4x slow-
down.

Leverage Approximation: How this was solved in Gaia

� Key idea: decouple synchronization of the model within the data center from
synchronization of the model across data centers

� Essentially, keep the functionality within datacenter same as before and syn-
chronize servers and workers within datacenter regularly.

� Across datacenters, synchronize infrequently (periodically).

I How can this work? it works because ML is already imprecise/approximate.
Some level of error among di�erent locations can be tolerated without sacri�cing
correctness!!

When to synchronize among datacenters?

� Key observation by authors: 95-97% of updates led to < 1% of change in model!

Suchithra Ravi 91

Su
ch
i

CHAPTER 12: Distributed Machine Learning

I Plot percentage change in model(x) with number of updates that didn't
result in a change greater than x% (y)

I Key idea: Communicate only the signi�cant 3-5% updates across datacenters.

12.2.1 ASP

As described above, Gaia relies on a new synchronization model that they call ap-
proximate, synchronous, parallel or ASP.

Mechanisms required to implement ASP:

� Signi�cance �lter: Filter out updates based on sigin�cance. This is done as
follows:

� Gaia exposes an API to allow programmers to specify what's signi�cant
for their case.

� System dynamically computes signi�cance of updates based on this func-
tion and �lters out insigni�cant ones.

� ASP Barrier: Sometimes, synchronizing signi�cant updates alone still takes
time, but need to ensure this is done synchronously. To achieve this Gaia
implements a barrier.

� During a remote sync, an index with some information about the pending
updates sent to remote datacenter.

� This index indicates to the datacenter to wait for the pending update
before proceeding.

� Exchange clock information: Need to ensure one datacenter doesn't lag
behind or become too stale because of slow WAN.

� Datacenters exchange clock information.

� Can use this information to estimate staleness and round trip times

� Also use it to determine if one datacenter needs to slow down its parameter
servers to allow other datacenters to catch up and for overall system to be
more in sync.

How this works overall

1. Within a data center, workers communicate with local parameter servers as
usual.

2. Updates are aggregated within the datacenter.

3. Signi�cance �lter applied to updates.

Suchithra Ravi 92

Su
ch
i

DISTIBUTED COMPUTING

4. When a signi�cant update is determined, this information is used to create
information for the ASP selective barrier.

5. ASP barrier communicated to remote datacenters.

I Note that this is control information sent via separate control queue, so
not blocked by the pending data to be transmitted to remote datacenter!

6. All communication tagged with local clock and these clock values used to de-
termine when the learning process needs to be slowed down.

12.2.2 Results from the paper

Consider one experiment described in the paper.

Experiment details:

� Performed with 11 EC2 servers (di�erent AWS regions)

� Datacenters in Virginia vs California; Singapore vs San Paolo.

� Baseline case: ML performed over LAN (within same datacenter)

Results

I Signi�cant drop in performance when WAN is used compared to LAN.

I Using parameter server simply across geo-distributed datacenters much worse
than performing ML in a single datacenter.

I Gap between LAN vs WAN much lesser when the datacenters are closer together
or connected by a better WAN.

I Di�erence in Gaia performance compared to LAN is minimal.

=⇒ Gaia allows ML at geo-distributed datacenters to be performed at speeds similar
to ML in a single datacenter!!

12.3 Collaborative Learning

12.3.1 Tradeo�s of Using Global Model

� Both Gaia and parameter servers try to create a single global/uni�ed model to
use across entire system.

� Global model not always needed

� Locality in data trends and patterns at di�erent locations - personalization
possible.

Suchithra Ravi 93

Su
ch
i

CHAPTER 12: Distributed Machine Learning

� Can better serve these applications using a small, more tailored model - also
more e�cient.

� Also, building good global model harder from algorithmic perspective - leads to
over�tting, less accuracy, etc., especially when data tends to display di�erent
properties at di�erent locations.

� Even with optimizations in Gaia and federated learning, data transfer costs
large and hard to justify.

12.3.2 Collaborative Learning with Cartel

Solution: New approach - Collaborative Learning

Goals for this new approach:

I Allow each node to bene�t from small, customized models, but also, transfer
knowledge when needed.

I When there are changes in environment or variations in workload pattern, look
for nodes where similar patterns have occurred and transfer knowledge from
those (perform model update).

I System level support to jumpstart the peer-�nding process and to enable per-
forming the right type of knowledge transfer.

What is Cartel:

� Cartel is a prototype system for collaborative learning

� Developed by Ada's group in collaboration with Nokia Bell Labs and published
in Cloud COmputing Symposium 2019.

Advanatages of Cartel:

� Particularly good for systems that have localized trends that that propagate
over time to other locations.

� More lightweight models compared to centralized approaches

� Less data transfer time and lower training time compared to centralized ap-
proaches

� Better model accuracy than learning in isolation.

� Can be deployed in vatious types of situations e.g. at cellular base stations
of mobile networks - might need to learn to con�gure h/w and s/w of mobile
network.

Suchithra Ravi 94

Su
ch
i

DISTIBUTED COMPUTING

Basic operation: Cartel relies on a centralized component: metadata service to
aggregate metadata about learning processes at di�erent nodes.

1. Each node receives some number of requests

2. Each node performs local learning process using its local storage

3. Drift Detection Each node dynamically evaluates the quality of the learning
and when it detects a drift (model accuracy drops for some sort of change, it
contacts metadata server.

4. Metadata server, during regular operation, accumulates some metadata about
classes observed at each location, accuracies at these locations, etc.

I Small amount of data compared to data transfer in centralized approaches.

5. Using metadata information, the service �nds a good peer node (called good
logical neighbor)

6. Knowledge Transfer: Once peer is found, parameters are exchanged between
these nodes.

Experimental setup

� Compare results to 2 extreme baselines: centralized approach , isolated ap-
proach.

� Di�erent workloads i.e. di�erent patterns of variation in geographical locations.

� Di�erent metrics:

� How quickly the model at a single location adapts to changes

� How much data transfer is required to facilitate learning (for learning to
converge)

� Size of the resulting model

� How long it takes to learn about other models or to perform inference

Results

� Adapts quickly to changes in workload: When shift occurs, converges 8x
faster compared to isolated learning.

� Reduces total data transfer costs: Upto 1500x less data transferred com-
pared to centralized approaches.

� Produces smaller models: 3x more lightweight models than global models
leading to 5.7x faster training.

Suchithra Ravi 95

Su
ch
i

CHAPTER 12: Distributed Machine Learning

12.4 Other stages of ML Pipeline

ML Pipeline has other stages:

1. Training

2. Model Serving : Model used to serve queries

3. Hyperparameter Tuning

4. Steaming

5. Simulation

6. Featurization

Some stages related to creating and optimizing models, others related to data delivery
or execution of the distributed tensor manipulations.

� Ray Lab in Berkeley developed a system called Ray that integrates all these
types of functionalities in a single uni�ed framework.

I Opens up many e�ciencies in the end-to-end process : Currently each stage
performed using di�erent technology, so di�erent types of systems need to in-
teract and coordinate to exchange data between various stages → room for
optimization.

� Ray Paper from OSDI 2018.

Suchithra Ravi 96

Su
ch
i

Byzantine Fault Tolerance

Consensus algorithms previously discussed always assumed that all nodes bevae prop-
erly unless they fail (i.e. stop working). But this need not be the case in reality. In
this chapter, we look at failures where nodes behave incorrectly, and how to achieve
consensus in such scenarios.

13.1 Byzantine Failure and Byzantine Generals

Byzantine failures are failures where nodes in a distributed system continue exe-
cuting but start sending incorrect messages, for malicious or arbitrary reasons. The
most general de�nition of the failure is that the faulty participant presents di�erent
symptoms to di�erent observers.

Definition 13.1: Byzantine Generals Problem

The Byzantine Generals Problem was �rst described by Leslie Lamport in a
paper published in 1982. It raises the question of how to reach a consensus,
(i.e. a single correct decision) in the presence of Byzantine failures in the
system.

In the original problem, a group of generals need to agree on whether to
attack some location or retreat (so they need to reach consensus). Under-
lying assumption is that to succeed, the generals to all attack together or
retreat entirely (a half-baked attack will likely fail!) The problem refers to
the problem of achieving the right conclusion despite the presence of faulty
generals (or messengers).

Details of original Problem

� The generals can only communicate with each other using messages sent via
messengers.

I Each general receives messages from everyone else about what their opinion
is

97

Su
ch
i

CHAPTER 13: Byzantine Fault Tolerance

I a decision can be reached by considering all the received messages (similar
to a consensus protocol)

� Neither the generals nor the messengers can be trusted!

� A general may have become corrupt, so may send di�erent messages to
di�erent generals

� Amessenger may have been compromised so the messages arrive corrupted.

� When a general receives faulty messages, they may reach the incorrect conclu-
sion.

I For example, if another general appears to sometimes agree to attack but
sometimes agree to retreat, or rather tells the attackers they will attack
and tells the retreaters they will retreat, then the remaining generals would
act counterproductively.

Typically Byzantine faults are caused by malicious players or by nodes that are in-
ternally inconsistent (somehow the node lost some information, so for one query it
responds one way and the next query it responds di�erently)

Note that, a node appearing to be active to one node while appearing dead to another
(maybe due to partitioning) is typically not considered Byzantine failure, but a node
that responds with two di�erent values for the same Paxos query by two di�erent
.nodes is.

Goal here is to reach consensus with safety, liveness, correctness, etc. while tolerating
up to F failures despite byzantine behaviors.

1. Corrupt Messages: Use cryptographic methods to authenticate communica-
tion and verify that the messages have not been tampered with.

2. Untrustworthy participants: Increase the number of participants in the
system to tolerate Byzantine failures as well.

Note that FLP still holds here: the protocol can guarantee safety but to really guar-
antee liveness as well, need to add requirement that that messages will be delivered
with some bounded delay.

13.2 Practical Byzantine Fault Tolerance: pBFT

pBFT is an algorithm proposed by Miguel Castro and Barbara Liskov from MIT
and was presented at OSDI'99 for practically achieving Byzantine fault tolerance.
Though there were other algorithms that also proved the (3f+1) nodes requirement,
pBFT was the �rst solution (at the time of presenting) capable of processing large
number of operations per second.

Suchithra Ravi 98

Su
ch
i

DISTIBUTED COMPUTING

Model Assumptions/Goals

� The client interacts with a group of servers that implement a replicated service.

� Clients need guarantee that servers reach consensus when replicating client's
updates or will respond such that client can determine correct response using
majority voting among received responses.

� One of the replicated servers is a leader; rest are backups

� An arbitrary set of upto f servers may fail

� The primary (or leader node) determines the current view of the system.

� In the view, identity of primary node may change over time. (e.g. if primary
itself fails)

� Each replica maintains consistent information about server state, messages ex-
changed and current view (including who the primary is).

� All communication is secure

I Messages may be secured cryptographically through use of public key infras-
tructure, message digests, etc.

Why do we need (3f+1) nodes

� If we have n nodes in the system and need to tolerate f faults, we have (N - f)
active nodes.

� Now if we simply decide based on (N - f) nodes, it is possible f of those nodes
were simply delayed, but a di�erent f nodes had failed with Byzantine failures.

� This means we actually only have (N -f -f) reliable nodes.

� To reach a decision (majority voting), a majority of these reliable nodes must
be > f.

N − f − f > f

=⇒ N > 3f

=⇒ At a minimum, N = 3f + 1

13.3 pBFT Algorithm

Client side:

1. Client makes a request to at least one server (say, the primary), and it ultimately
receives a response.

Suchithra Ravi 99

Su
ch
i

CHAPTER 13: Byzantine Fault Tolerance

I Since even leader can be corrupt, the client sends request to all servers and
receives multiple responses.

2. Once >f+1 responses are received, client concludes that it has the correct re-
sponse.

Server side:

1. Once received at the primary, request is processed in 3 phases.

2. Pre-prepare Phase:

� What the primary does: Primary needs to verify the message and send
pre-prepare requests piggybacked on regular messages.

(a) Picks and sequence number

(b) computes the digest of the message

(c) multicast a pre-prepare request to all of the backup replicas.

� What the replicas do: Each of the replicas needs to check whether they
can accept the pre-prepare request.

(a) Checks that signature and message digest are cryptographically cor-
rect.

(b) Stores this message in the log

� If the log is full, the response to this message will be delayed or
blocked.

(c) Message received corresponds to the current view that they are aware
of

(d) Sequence number included in the message is new

(e) Sequence number received lies between two watermarks (based on
some maximum number of in�ight operations in the system.)

I Ensures that a faulty primary doesn't just start sending messages
with a large sequence number so as to block other requests from
getting replicated.

3. Prepare Phase: If a pre-prepared message is accepted, then the replica enters
the prepare phase.

(a) Multicasts a prepare message to all other nodes.

(b) Logs that this message has been sent

(c) Each replica then waits for 2f matching prepare messages to be received
from other replicas.

(d) Waits for the predicate prepared(m, v, n, i) to be true.

Suchithra Ravi 100

Su
ch
i

DISTIBUTED COMPUTING

I Log has a pre-prepare request AND 2f matching responses have been re-
ceived with same v, n, d.

4. Commit Phase: Once >2f valid responses are received, a replica enters the
commit phase.

(a) It sends a commit message to all other replicas

(b) Logs that commit message was sent.

(c) Waits for the predicate committed− local(m, v, n, i) to be true.

I prepare(m, v, n, i) is true AND 2f commits (other than its own) have been
received with same v, n, d.

(d) Once the request is committed, it can be executed and a response can be
sent to the client.

Some additional details in the paper

� Special cases:

I Log Garbage collection: When log is full and needs to be cleaned up.

I View Change: Problems with primary and view changed.

I Liveness: use of timeouts to guarantee liveness.

� Performance Optimizations:

� To reduce number of messages

� To reduce overlap in message processing

� Example system: Byzantine-fault tolerant Distributed File service implemented
with pBFT

13.4 Byzantine Consensus vs. Blockchain

Some aspects of blockchain have parallels with pBFT. For instance, Distributed
Ledger is the underlying technology enabling many blockchain solutions.

� Distributed Ledger is a timestamp sequence of records replicated across dis-
tributed machines in a consistent manner. (similar to replicated logs in Paxos
and pBFT)

� Each node agrees on the precise order and content of ledger entries, regardless
of failures.

� The ledger encodes the execution of a series of updates or transactions and their
entire history.

Suchithra Ravi 101

Su
ch
i

CHAPTER 13: Byzantine Fault Tolerance

� The ledger must be unique and unchanged even if some participants in the
system try to make changes or to create an alternative view of the history.

� And it must achieve that without introducing some centralized clearinghouse
for reaching agreements.

Can we used to pBFT for Blockchain?

� Why is it possible:

� pBFT allows us to achieve consensus in a decentralized manner.

� (Unlike Paxos,) Can achieve consensus while dealing with Byzantine fail-
ures and unreliable networks.

� Why is it a bad idea:

� pBFT has a relationship between number of faulty nodes and number of
total nodes in the system.

I These values may not been known a priori.

I An attacker can create many faulty instances of themselves, so this
number is not useful.

� Even if we could determine N, number of messages exchanged are cubic
with respect to number of participants =⇒ Costly!

How distributed ledger actrually works Distributed ledgers use some impor-
tant ideas to a) probabilitically reduce number of participants required for consensus,
and b) reduce number of messages required for a safe chain update (and forward
progress), thus reducing the computational power and energy required

� Proof of Work: Participants are required to solve cryptographically challeng-
ing problems/puzzles and to present proof of work.

I These puzzles need to be solved within the shortest amount of time.

� Incentive structure: Good behavior rewarded via cryptocurrencies.

I Encourages participants to behave correctly (discourages malicious or Byzantine
behavior)

� Miners receive cryptocurrency when creating a new block in the system,

� Miners also collect fees from transactors whose transactions are included in the
values of those blocks.

Trivia: The original BitCoin paper depends on multiple popular technologies, but not

explicitly on solutions for Byzantine fault tolerance.

The details of speci�c distributed ledger solutions vary with respect to a number of

Suchithra Ravi 102

Su
ch
i

DISTIBUTED COMPUTING

features or design goals regarding performance, trust assumptions, etc. For instance,
obvious di�erences exist among permissionless (fully decentralized) solutions vs.
permissioned solutions with a subset of trusted parties.

Suchithra Ravi 103

Su
ch
i

Edge Computing and the Internet
of Things(IoT)

In this chapter, we look at some recent trends around new types of components and
infrastructure in the computing landscape, and how these change distributed systems
assumptions and designs. We speci�cally look at edge computing and the Internet of
Things(IoT).

14.1 Edge Computing?

Tiers in Computing

1. Cloud Data Centers Traditionally, these supplied data to the end-user through
geo-distributed datacenters. (Usually done to deal with latency requirements).
However, with newer technologies, the physical limitations on latency imply
that newer requirements cannot be met by supplying from these alone.

2. Cloudlets Newer data centers closer to the edge, to meet these requirements
better. Include micro-datacenters in enterprise locations, restaurant chains,
vehicles, etc.

3. End-user devices Traditionally, end-user applications and devices interact
with services deployed in remote cloud data centers. Newer devices on the edge
(AR/VR applications, autonomous driving, etc.) have created newer demands
for latency/bandwidth.

4. Very low-end, low power devices: Encapsulate basic sensing/actuating
devices - may not have reliable energy sources, and may have newer challenges.

Newer tiers have vastly di�erent requirements necessitating the use of newer ap-
proaches and technologies to serve these.

Why edge computing Consider the Cisco report Virtual Network Index that
tracks network tra�c volume data:

� Recent years and projected increase in both number of connected devices and

104

Su
ch
i

DISTIBUTED COMPUTING

amount of raw data.

� Also projected increase in demand for wireless connectivity.

� Increase in demand primarily due to:

� Emergence of new types of workloads that require more bandwidth, better
latency guarantees, etc.

� Post-pandemic: Many companies have adopted remote work on a more
permanent basis. So, now connectivity is not just for games or entertain-
ment,

I Post-pandemic workload distribution: More in residential areas than in tradi-
tional hotspots.

14.1.1 Closing the Latency/Bandwidth Gap

Given that there is increasingly greater demand for network resources, how can we
close this gap?

� New technologies: Could potentially rely on new technologies like 5G, etc.
But this is not good enough because:

� Might take a long time to deploy these new technologies

� Even after deployment, older technologies will continue to be around.

� Usually, deployment also comes in with higher cost.

� Open Source technologies: Cost factor can be addressed to some extent by
using open source software stacks and commodity hardware.

� Number of open source e�orts that provide:

* hardware speci�cations

* open source implementations of mobile network stacks, including radio
stacks and netork core stack

* prototypes of mobile network system prototypes that allow federated
models of participants to interact in the network.

� E.g. academic project presented at NSDI to address connectivity gaps in
South-east Asia.

I Moving to the edge: More promising to tap into the compute and storage
resources at the edges of the network.

Originally called Mobile Edge Computing or MEC, where mobile refers to the
edge infrastructure in the mobile networks, MEC has later been extended to refer to
the access theory of the network and now stands for Multi-access Edge Computing.
The basic idea here is to trade one type of resource for another i.e. instead of �nding

Suchithra Ravi 105

Su
ch
i

CHAPTER 14: Edge Computing and the Internet of Things(IoT)

ways to provide greater connectivity, we use computational resources closer to the
edge to satisfy the connectivity demand.

Edge computing is often broadly de�ned and can refer to infrastructure in di�erent
form factors integrated in the end to end communication paths -in cellular towers or
in speci�c locations, etc.

Edge Computing vs CDNs Edge Computing is not necessarily new. Even in
2017, >50% of the internet tra�c was served through CDNs, and this number is
rapidly growing. Since CDNs try to deploy servers at di�erent locations closer to the
end-user to o�er better connectivity and reduce backhaul bandwidth, they are similar
to edge computing in some sense. However, the primary di�erences are:

� Scale: CDNs are concerned with deployment of infrastructure (on the order
of 1000's of locations globally). Something like mobile infrastructure needs 2
orders of magnitude more infrastructure points (Can derive this from FCC data
registering devices on antennas)

� Ownership: CDNs are typically owned by the CDN providers (not end-users!)

I Mobile network operators are now partnering with cloud providers to tap into
these edge resources to provide a new "cloud".

Note that, mobile networks are not the only solution for the edge tier. A report called
State of the Edge provides a taxonomy of the di�erent types of edge locations,
including wireless/cellular access points, aggregation points, new devices like drones,
cars, cameras etc.

14.1.2 Edge Computing Drivers

The fundamental drivers behind edge computing are:

� Speed of Light: poses fundamental limitations on latency and forces us to
deploy services closer to the end-user.

� Increase in data tra�c: creates demand for bandwidth

� Energy Demand: caused by increased network capacities and power consump-
tion, poses limitations on how much data can be driven into a datacenter.

� Regulations: Data sovereignity laws, privacy laws etc. mandating data to be
processed within national boundaries.

� Newer applications: such as mentioned above- drones, autonomous cars etc.

� 5G: is not only an enabler of edge computing, but also a driver! E.g. latency
requirements of sub-10-20 ms

� Letency as a driver: Keynote given by Pablo Rodriguez classi�es di�erent

Suchithra Ravi 106

Su
ch
i

DISTIBUTED COMPUTING

use cases in di�erent latency bands. Number of these requirements could be
met over wired infrastructure, but not through wireless hop, thus necessitating
a new tier.

� Bandwidth as a driver: In recent paper, Microsoft researchers discuss avail-
able data rates in di�erent countries. Apart from large di�erences between
countries/technologies, there is also large di�erence in upload vs. download
bandwidths, and future demands for higher uplink bandwidths is also a driver

Edge Computing is expected to have a wide variety of applications from food industry
(Chick Fil-A) to agriculture.

14.2 Distributed Edge Computing

So, how is distributed edge computing di�erent from traditional distributed systems
we have been seeing thus far? Or, why can't we simply use the same technologies as
before:

� Scale: While data centers may have extremely large numbers of components,
those are more tightly coupled. These protocols are too chatty to be used on
edge devices and can introduce too many overheads.

� Edge is not elastic: Datacenter systems assume that on failures, resources are
replaced by other nearby resources (compute, storage, etc.) This is not true for
edge devices - if we are unable to reach one edge device, cannot run the same
service on another!

I This implies we need to provide a lower service level rather than complete
availability.

� Device Churn: Obviously datacenters don't have nearly as much device churn
as edge computing. This can cause a decrease in service reliability.

� Mobility: Edge devices tend to move much more (e.g. movile devices may
move between base stations, etc.)

I Fault-tolerant solutions based on datacenters will cause a lot more overheads if
used in edge computing.

� Variability: Much greater heterogeneity in the types of devices used, with
large variations in compute and network capabilities, thus performance is also
quite variable. (Cannot assume symmetry, unlike with datacenters)

� Localization: Datacenter actions tend to be more homogeneous, wheread there
is greater localization in actions at edge devices (such as with access patterns,
network infrastructure, etc.)

� Decentralization: More common to �nd resources operated by multiple providers.

Suchithra Ravi 107

Su
ch
i

CHAPTER 14: Edge Computing and the Internet of Things(IoT)

� Security assumptions: Security is a much higher priority since with the vari-
ability of devices, cannot assume the same level of security.

These factors need to be considered to build solutions for distributed edge computing.

14.3 IoT and Distributed Transactions

Consider IoT as an example scenario to look at how distributed systems concepts
need to be modi�ed for new infrastructure tiers. In IoT, typically, gateways closer
to the user (at home, work, hospitals, etc.) sense the environment, then feed this
data to backend services deployed in the cloud that process the data and may provide
updates to (or trigger actions at) actuator devices closer to the user.

Example: Intrusion detection application Consider an example of an intrusion
detection system, that uses a motion detection device (may be a camera), that triggers
an alarm if unusual activity is detected. The motion detection device feeds camera
data to the backend service, which performs some processing actions and then triggers
the alarm if needed. It is necessary for the service to avoid redundant actions, e.g.
not trigger the alarm if it was already triggered.

This might involve 2 di�erent state variables: alarms.strobe that triggers the alarm
and state.alarmActive that shows that alarm is active. The update of these variables
needs to be performed atomically.

The classic distributed system solution for these would be to use transactions and an
undo/redo log. However, "undo"ing the operation in a physical environment does not
make sense (How do we even "undo" an alarm ringing?), so we need to ensure there
are no inconsistent states during execution. For example, if the alarmActive state is
set but the alarmStrobe action was lost in the network, the alarm never rings, but it
shows as already activated, so the system doesn't trigger the alarm again! (Also, the
application state here would be inconsistent with the physical state of the system.)

While this is a simple example, there are other possible scenarios that expose the
underlying problems of directly using datacenter-based approaches for IoT. Thus, we
need di�erent solutions!

The problems above are attributed to 3 types of dependencies:

1. Sensing → Actuating: Here, an actuation action is triggered based on a
sensing variable. The actuation should not be triggered if the sensed value does
not satisfy the required predicate.

2. Sensing → App State Update: Here, the application state is updated based
on a sensed value.

3. Actuating → App State Update: Here, the application state is updated

Suchithra Ravi 108

Su
ch
i

DISTIBUTED COMPUTING

based on actuatoin actions. (Example above where the state should indicate
alarm was already triggered.)

In all these cases, the correct predicates should be checked before the dependent
operation is performed to retain consistency.

14.4 Transactuations

To deal with these problems, a new concept is proposed called transactuation. Trans-
actuations are a high level abstraction and a programming model, where the trans-
action is speci�ed by:

1. applicationLogic

2. sensingPolicy:

(a) The sensingPolicy can be expressed as a set of hard-coded values required
for some of the sensors sensorList.

(b) Can also include timeWindow that speci�es the time when these values
should be read and when the actions should take place

(c) Can also specify whether all requirements need to be met or only some of
them.

3. actuatingPolicy: Expresses the dependencies among updates to the applica-
tion state and actuation of physical devices.

(a) specify whether the updates are allowed when any or some or none of the
device actuations have succeeded.

(b) programmers can also specify the desired behavior of transactions on suc-
cess (commit) or failure (abort)

This programming model allows us to describe the operations in the system as well
as make some guarantees about the atomic durability of the actuations in the envi-
ronment. It also provides su�cient information to schedule updates and thus avoid
concurrency bugs.

Two important aspects of expressing transactuations are:

1. Sensing Invariants: speci�es when transactuations can execute with respect
to some property of the sensor values

� Time upto which sensor values can be used - this can bound the staleness
of the sensor values read.

� How many failed sensors are there allowed to be in the environment, etc.

2. Actuating Invariants: Speci�es when a transactuation commits its applica-

Suchithra Ravi 109

Su
ch
i

CHAPTER 14: Edge Computing and the Internet of Things(IoT)

tion state updates.

� Guarantee that a su�cient percentage of the actuations have already suc-
ceeded as per the speci�ed actuation policy. E.g. at least one alarm must
be turned on before the alarmState is updated.

These policies and invariants can be compiled to generate a runtime that can insert
checks at the appropriate places to enforce these, decide whether a transaction can
be committed, a new transaction can be started, etc., thus leading to Serializability
among concurrent transactions.

I Transaction execution will start when the sensing policies are satis�ed

I Ordering of the device actuations will be determined so as to avoid any rollbacks

I Only after the �nal commit is performed by the actuation policy, the internal
state dependent on the actuations will be determined.

14.4.1 Evaluation of Transactuations

The paper also evaluates if the transactuations are useful at all.

Experimental Setup

� Evaluated with di�erent applications

� Applications from di�erent categories: convenience, energy e�ciency, safety,
security.

� Done by modifying original application implementation to add consistency cecks
and then comparing with the re-implementation of the application using the
transactuation programming system

Metrics used for this are:

� Lines of Code: Programmability metric

� Performance impact on failure-free execution: Do the runtime checks
signi�cantly slow down the execution

� Correct behavior during failures

� Generalizability: Done by testing on diverse IoT applications.

Results :

� More compact implementation: 2-3 times fewer lines of code (depends on
sensing and actuation policies used)

Suchithra Ravi 110

Su
ch
i

DISTIBUTED COMPUTING

� Runtime performance impact: Introduces average 50% overhead (In some
cases, much lesser. Depends on the invariant checks being enforced)

� Correctness: Ensures all consistency requirements.

We may conclude that the overheads seen are acceptable given the programmability
and correctness guarantees.

Suchithra Ravi 111

Su
ch
i

Index of Terms

2-Phase Commit, 42, 67, 70
3-Phase Commit, 42

ACID, 65
Active Replication, 52, 53
Actual run, 30
admissible run, 38, 39, 40
ASP, 92
Availability, 11, 13, 66

Bivalent con�guration, 39
Byzantine failures, 97

Cartel, 94
Causal Consistency, 75, 82
Chain Replication with Apportioned

Queries, 55
client, 14
Clock Consistency, 24, 26, 27, 29
clock function, 25
Collaborative Learning, 94
collective operations, 84
concurrent events, 24, 26, 75, 82
Consensus, 37, 41
Consistency, 11, 13, 74
Consistency Model, 12, 75
Consistent Cut, 31, 59, 71
COPS, 82
Cut, 31, 71

Deciding Run, 38
Deterministic Computation, 32
DHT, 87
Distributed Hash Table, 87
Distributed Ledger, 101
Distributed transaction, 66

Domino E�ect, 62

Eventual Consistency, 75
External Consistency, 68

happens before, 23, 75
hot items, 78

initiator node, 33
IoT, 108
isolated Learning, 90

Key-value stores, 75

Leases, 79
Linearizable, 12, 71, 72, 75
liveness, 41, 47
Logical clocks, 25
Look-aside cache, 76

marshalling, 15
MEC, 105
Memcached, 77
Mobile Edge Computing, 105
model invariants, 9
Multi-version Concurrency Control, 72

non-authoritative cache, 78

Observed run, 31
Optimistic Concurrency Control, 69, 72
optimistic locking, 69

parameter servers, 90
Partition Tolerance, 11
Paxos, 43, 67
pBFT, 98

112

Su
ch
i

Index

pessimistic locking, 69
Post-recording events, 31
Pre-recording events, 31
Primary-Backup, 52, 53
Process history, 23

Replicated State Machine, 53, 67
Run, 38

safety, 41, 47
Sequential Consistency, 75
Serializability, 75, 110
Serializable, 12, 65, 68, 72
server, 14
Snapshot Isolation, 72
Stable property, 35

Stand-by Replication, 52

State Replication, 52

Strict Consistency, 12, 75

Strong Clock Consistency, 25, 26, 27, 29

thundering herd problem, 79

Time Diagrams, 24, 31

Totally correct consensus protocol, 38

transaction, 65

Univalent con�guration, 39

Unstable property, 36

Vector Clock, 27

ViewStamp Replication, 47

113

	Contents
	Preface
	Introduction
	Why study Distributed Systems?
	What is a distributed system?
	Intuition

	Simple Model of a Distributed System
	More complex model of a Distributed System
	Importance of Model

	What is hard about Distributed Systems
	Properties of a Distributed System
	Correctness

	Brewer's CAP Theorem

	Remote Procedure Call
	Client-Server Architecture
	Challenges

	Role of RPC
	Architecture of RPC System
	Anatomy of an RPC Call
	Invocation Semantics of RPC Operation
	Examples of RPC Systems
	gRPC

	Time in Distributed Systems
	The Time Problem
	Why do we need to measure time in DS?
	Why is measuring time hard in DS?
	Logical Time

	Representing Time and Sequence
	Time Diagrams

	Clock Consistency
	Lamport's Scalar Clock
	Clock Definition
	Clock Correctness

	Vector Clock
	Clock Definition

	Matrix Clock

	State in Distributed Systems
	The problem of State
	What is state?
	Cuts
	Challenges in capturing state

	System Model
	Finding a Consistent Cut
	Assumptions of the algorithm
	Properties of state captured

	Global State
	Formal definition
	Benefits of Global State

	Consensus in Distributed Systems
	What is Consensus?
	Theoretical Posibility of Consensus
	System Model
	FLP Theorem
	Is Consensus Really Impossible?

	Consensus Protocols
	Goals of Consensus Protocols
	2-Phase Commit (2PC)
	3-Phase Commit (3PC)
	Paxos
	Basics of Paxos
	Phases of Paxos
	Paxos vs. FLP
	Paxos in Practice

	RAFT
	Phases of RAFT
	RAFT Correctness
	RAFT in Practice

	Replication
	What is Replication
	Goals
	Replication Models
	Replication Techniques
	Replication and Consensus
	How to choose replication method

	Chain Replication
	Pros and Cons

	CRAQ
	CRAQ Performance comparison with Chain Replication

	Fault Tolerance
	Basics of Failures
	How to deal with failures

	Rollback-Recovery
	Checkpointing
	Uncoordinated Checkpointing
	Coordinated Checkpointing
	Communication-Induced Checkpoints

	Logging
	Which Method to Use?

	Distributed Transactions
	Transactions and Distributed Transactions
	Google Spanner
	Spanner Stack
	Consistency Requirements for read operations

	True Time
	Ordering Write Transactions
	Ordering Read Transactions
	TrueTime alternatives

	AWS Aurora

	Consistency in Distributed Data Stores
	Consistency Models
	Look-Aside Cache
	Look-Aside Cache Read Operation
	Look-Aside Cache Update Operation

	Memcached
	Features of Memcache
	Mechanisms in Memcached
	Scaling Memcache

	Causal+ Consistency

	Peer-to-Peer and Mobility
	Communication Support assumed so far
	Interconnect Support
	Peer to Peer Systems
	Connectivity in P2P
	Approach 1: Centralized entity
	Approach 2: Flood or Gossip based protocols
	Approach 3: Distributed Hash Table

	Distributed Hash Table (DHT)

	Distributed Machine Learning
	Distributed Machine Learning Approaches
	Geo-Distributed ML with Gaia
	ASP
	Results from the paper

	Collaborative Learning
	Tradeoffs of Using Global Model
	Collaborative Learning with Cartel

	Other stages of ML Pipeline

	Byzantine Fault Tolerance
	Byzantine Failure and Byzantine Generals
	Practical Byzantine Fault Tolerance: pBFT
	pBFT Algorithm
	Byzantine Consensus vs. Blockchain

	Edge Computing and the Internet of Things(IoT)
	Edge Computing?
	Closing the Latency/Bandwidth Gap
	Edge Computing Drivers

	Distributed Edge Computing
	IoT and Distributed Transactions
	Transactuations
	Evaluation of Transactuations

	Index of Terms

